@ToolParserManager.register_module(["internlm"])
class Internlm2ToolParser(ToolParser):
def __init__(self, tokenizer: AnyTokenizer):
super().__init__(tokenizer)
self.position = 0
def adjust_request(self, request: ChatCompletionRequest) -> ChatCompletionRequest:
if request.tools and request.tool_choice != "none":
# do not skip special tokens because internlm use the special
# tokens to indicate the start and end of the tool calls
# information.
request.skip_special_tokens = False
return request
def get_arguments(self, obj):
if "parameters" in obj:
return obj.get("parameters")
elif "arguments" in obj:
return obj.get("arguments")
return None
def extract_tool_calls_streaming(
self,
previous_text: str,
current_text: str,
delta_text: str,
previous_token_ids: Sequence[int],
current_token_ids: Sequence[int],
delta_token_ids: Sequence[int],
request: ChatCompletionRequest,
) -> Union[DeltaMessage, None]:
if "<|action_start|>" not in current_text:
self.position = len(current_text)
return DeltaMessage(content=delta_text)
# if the tool call is sent, return an empty delta message
# to make sure the finish_reason will be sent correctly.
if self.current_tool_id > 0:
return DeltaMessage(content="")
last_pos = self.position
if "<|action_start|><|plugin|>" not in current_text[last_pos:]:
return None
new_delta = current_text[last_pos:]
text, action = new_delta.split("<|action_start|><|plugin|>")
if len(text) > 0:
self.position = self.position + len(text)
return DeltaMessage(content=text)
action = action.strip()
action = action.split("<|action_end|>".strip())[0]
# bit mask flags for partial JSON parsing. If the name hasn't been
# sent yet, don't allow sending
# an incomplete string since OpenAI only ever (as far as I have
# seen) allows sending the entire tool/ function name at once.
flags = Allow.ALL if self.current_tool_name_sent else Allow.ALL & ~Allow.STR
try:
parsable_arr = action
# tool calls are generated in an object in internlm2
# it's not support parallel tool calls
try:
tool_call_arr: dict = partial_json_parser.loads(parsable_arr, flags)
except partial_json_parser.core.exceptions.MalformedJSON:
logger.debug("not enough tokens to parse into JSON yet")
return None
# if the current tool name hasn't been sent, send if available
# - otherwise send nothing
if not self.current_tool_name_sent:
function_name = tool_call_arr.get("name")
if function_name:
self.current_tool_id = self.current_tool_id + 1
delta = DeltaMessage(
tool_calls=[
DeltaToolCall(
index=self.current_tool_id,
type="function",
id=make_tool_call_id(),
function=DeltaFunctionCall(
name=function_name
).model_dump(exclude_none=True),
)
]
)
self.current_tool_name_sent = True
self.streamed_args_for_tool.append("")
else:
delta = None
# now we know we're on the same tool call and we're streaming
# arguments
else:
prev_arguments = self.get_arguments(
self.prev_tool_call_arr[self.current_tool_id]
)
cur_arguments = self.get_arguments(tool_call_arr)
# not arguments generated
if not cur_arguments and not prev_arguments:
delta = None
# will never happen
elif not cur_arguments and prev_arguments:
logger.error(
"INVARIANT - impossible to have arguments reset mid-arguments"
)
delta = None
# first time to get parameters
elif cur_arguments and not prev_arguments:
cur_arguments_json = json.dumps(cur_arguments, ensure_ascii=False)
arguments_delta = cur_arguments_json[
: cur_arguments_json.index(delta_text) + len(delta_text)
]
delta = DeltaMessage(
tool_calls=[
DeltaToolCall(
index=self.current_tool_id,
function=DeltaFunctionCall(
arguments=arguments_delta
).model_dump(exclude_none=True),
)
]
)
self.streamed_args_for_tool[self.current_tool_id] += arguments_delta
# both prev and cur parameters, send the increase parameters
elif cur_arguments and prev_arguments:
cur_args_json = json.dumps(cur_arguments, ensure_ascii=False)
prev_args_json = json.dumps(prev_arguments, ensure_ascii=False)
argument_diff = extract_intermediate_diff(
cur_args_json, prev_args_json
)
delta = DeltaMessage(
tool_calls=[
DeltaToolCall(
index=self.current_tool_id,
function=DeltaFunctionCall(
arguments=argument_diff
).model_dump(exclude_none=True),
)
]
)
self.streamed_args_for_tool[self.current_tool_id] += argument_diff
# check to see if the name is defined and has been sent. if so,
# stream the name - otherwise keep waiting
# finish by setting old and returning None as base case
tool_call_arr["arguments"] = self.get_arguments(tool_call_arr)
self.prev_tool_call_arr = [tool_call_arr]
return delta
except Exception:
logger.exception("Error trying to handle streaming tool call.")
logger.debug(
"Skipping chunk as a result of tool streaming extraction error"
)
return None
def extract_tool_calls(
self,
model_output: str,
request: ChatCompletionRequest,
) -> ExtractedToolCallInformation:
text = model_output
tools = request.tools
if "<|action_start|><|plugin|>" in text:
text, action = text.split("<|action_start|><|plugin|>")
action = action.split("<|action_end|>".strip())[0]
action = action[action.find("{") :]
action_dict = json.loads(action)
name, parameters = (
action_dict["name"],
json.dumps(
action_dict.get("parameters", action_dict.get("arguments", {})),
ensure_ascii=False,
),
)
if not tools or name not in [t.function.name for t in tools]:
ExtractedToolCallInformation(
tools_called=False, tool_calls=[], content=text
)
tool_calls = [
ToolCall(function=FunctionCall(name=name, arguments=parameters))
]
return ExtractedToolCallInformation(
tools_called=True,
tool_calls=tool_calls,
content=text if len(text) > 0 else None,
)
return ExtractedToolCallInformation(
tools_called=False, tool_calls=[], content=text
)