Skip to content

vllm.model_executor.layers.quantization.mxfp4

logger module-attribute

logger = init_logger(__name__)

Mxfp4Backend

Bases: Enum

Source code in vllm/model_executor/layers/quantization/mxfp4.py
class Mxfp4Backend(Enum):
    NONE = 0

    # FlashInfer Backend
    SM100_FI_MXFP4_MXFP8_TRTLLM = 1
    SM100_FI_MXFP4_MXFP8_CUTLASS = 2
    SM100_FI_MXFP4_BF16 = 3
    SM90_FI_MXFP4_BF16 = 4

    # Marlin Backend
    MARLIN = 5

    # Triton Backend
    TRITON = 6

MARLIN class-attribute instance-attribute

MARLIN = 5

NONE class-attribute instance-attribute

NONE = 0

SM100_FI_MXFP4_BF16 class-attribute instance-attribute

SM100_FI_MXFP4_BF16 = 3

SM100_FI_MXFP4_MXFP8_CUTLASS class-attribute instance-attribute

SM100_FI_MXFP4_MXFP8_CUTLASS = 2

SM100_FI_MXFP4_MXFP8_TRTLLM class-attribute instance-attribute

SM100_FI_MXFP4_MXFP8_TRTLLM = 1

SM90_FI_MXFP4_BF16 class-attribute instance-attribute

SM90_FI_MXFP4_BF16 = 4

TRITON class-attribute instance-attribute

TRITON = 6

Mxfp4Config

Bases: QuantizationConfig

Source code in vllm/model_executor/layers/quantization/mxfp4.py
class Mxfp4Config(QuantizationConfig):
    def __init__(self, ignored_layers: Optional[list[str]] = None):
        super().__init__()
        self.ignored_layers = ignored_layers

    @classmethod
    def from_config(cls, config):
        return cls()

    @classmethod
    def get_min_capability(cls) -> int:
        return 80

    @classmethod
    def get_name(cls) -> QuantizationMethods:
        return "mxfp4"

    @classmethod
    def get_supported_act_dtypes(cls) -> list[torch.dtype]:
        return [torch.bfloat16]

    @classmethod
    def get_config_filenames(cls) -> list[str]:
        return []

    def get_quant_method(
        self, layer: torch.nn.Module, prefix: str
    ) -> Optional["QuantizeMethodBase"]:
        from vllm.attention.layer import Attention  # Avoid circular import

        if isinstance(layer, LinearBase):
            if self.ignored_layers and is_layer_skipped(
                prefix=prefix,
                ignored_layers=self.ignored_layers,
                fused_mapping=self.packed_modules_mapping,
            ):
                return UnquantizedLinearMethod()
            raise NotImplementedError("Mxfp4 linear layer is not implemented")
        elif isinstance(layer, FusedMoE):
            return Mxfp4MoEMethod(layer.moe_config)
        elif isinstance(layer, Attention):
            raise NotImplementedError("Mxfp4 attention layer is not implemented")
        return None

ignored_layers instance-attribute

ignored_layers = ignored_layers

__init__

__init__(ignored_layers: Optional[list[str]] = None)
Source code in vllm/model_executor/layers/quantization/mxfp4.py
def __init__(self, ignored_layers: Optional[list[str]] = None):
    super().__init__()
    self.ignored_layers = ignored_layers

from_config classmethod

from_config(config)
Source code in vllm/model_executor/layers/quantization/mxfp4.py
@classmethod
def from_config(cls, config):
    return cls()

get_config_filenames classmethod

get_config_filenames() -> list[str]
Source code in vllm/model_executor/layers/quantization/mxfp4.py
@classmethod
def get_config_filenames(cls) -> list[str]:
    return []

get_min_capability classmethod

get_min_capability() -> int
Source code in vllm/model_executor/layers/quantization/mxfp4.py
@classmethod
def get_min_capability(cls) -> int:
    return 80

get_name classmethod

get_name() -> QuantizationMethods
Source code in vllm/model_executor/layers/quantization/mxfp4.py
@classmethod
def get_name(cls) -> QuantizationMethods:
    return "mxfp4"

get_quant_method

get_quant_method(
    layer: Module, prefix: str
) -> Optional[QuantizeMethodBase]
Source code in vllm/model_executor/layers/quantization/mxfp4.py
def get_quant_method(
    self, layer: torch.nn.Module, prefix: str
) -> Optional["QuantizeMethodBase"]:
    from vllm.attention.layer import Attention  # Avoid circular import

    if isinstance(layer, LinearBase):
        if self.ignored_layers and is_layer_skipped(
            prefix=prefix,
            ignored_layers=self.ignored_layers,
            fused_mapping=self.packed_modules_mapping,
        ):
            return UnquantizedLinearMethod()
        raise NotImplementedError("Mxfp4 linear layer is not implemented")
    elif isinstance(layer, FusedMoE):
        return Mxfp4MoEMethod(layer.moe_config)
    elif isinstance(layer, Attention):
        raise NotImplementedError("Mxfp4 attention layer is not implemented")
    return None

get_supported_act_dtypes classmethod

get_supported_act_dtypes() -> list[dtype]
Source code in vllm/model_executor/layers/quantization/mxfp4.py
@classmethod
def get_supported_act_dtypes(cls) -> list[torch.dtype]:
    return [torch.bfloat16]

Mxfp4MoEMethod

Bases: FusedMoEMethodBase

Source code in vllm/model_executor/layers/quantization/mxfp4.py
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
class Mxfp4MoEMethod(FusedMoEMethodBase):
    def __init__(self, moe: FusedMoEConfig):
        super().__init__(moe)
        self.topk_indices_dtype = None
        self.moe = moe
        self.mxfp4_backend = get_mxfp4_backend()
        self.max_capture_size = (
            get_current_vllm_config().compilation_config.max_capture_size
        )

        assert self.mxfp4_backend != Mxfp4Backend.NONE, (
            "No MXFP4 MoE backend (FlashInfer/Marlin/Triton) available."
            "Please check your environment and try again."
        )
        self._cache_permute_indices: dict[torch.Size, torch.Tensor] = {}

    def create_weights(
        self,
        layer: torch.nn.Module,
        num_experts: int,
        hidden_size: int,
        intermediate_size_per_partition: int,
        params_dtype: torch.dtype,
        **extra_weight_attrs,
    ):
        self.num_experts = num_experts
        weight_dtype = torch.uint8
        scale_dtype = torch.uint8

        # FIXME (zyongye): ship after torch and safetensors support mxfp4
        # is_torch_mxfp4_available = (
        #     hasattr(torch, "float4_e2m1fn_x2") and
        #     hasattr(torch, "float8_e8m0fnu"))
        # if is_torch_mxfp4_available:
        #     weight_dtype = torch.float4_e2m1fn_x2
        #     scale_dtype = torch.float8_e8m0fnu

        mxfp4_block = 32

        intermediate_size_per_partition_after_pad = intermediate_size_per_partition
        if self.mxfp4_backend == Mxfp4Backend.MARLIN:
            # The moe marlin kernel requires that for each linear
            # n % 256 == 0 and k % 128 == 0.
            # In gate_up_proj:
            #    n = 2 * intermediate_size_per_partition_after_pad
            #    k = hidden_size
            # In down_proj
            #    n = hidden_size
            #    k = intermediate_size_per_partition_after_pad
            intermediate_size_per_partition_after_pad = round_up(
                intermediate_size_per_partition, 128
            )
            hidden_size = round_up(hidden_size, 256)

            layer.params_dtype = params_dtype
            layer.num_experts = num_experts
            layer.hidden_size = hidden_size
            layer.intermediate_size_per_partition = (
                intermediate_size_per_partition_after_pad
            )
        elif (
            self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
            or self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16
        ):
            # pad the intermediate size to be a multiple of 2 * mxfp4_block
            # for to hold non-uniform sharded tensor as well as swizzling
            # other padding to increase performance
            intermediate_size_per_partition_after_pad = round_up(
                intermediate_size_per_partition, 256
            )
            hidden_size = round_up(hidden_size, 256)
        elif (
            self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS
            or self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16
        ):
            intermediate_size_per_partition_after_pad = round_up(
                intermediate_size_per_partition, 128
            )
            hidden_size = round_up(hidden_size, 128)
        elif current_platform.is_rocm():
            intermediate_size_per_partition_after_pad = round_up(
                intermediate_size_per_partition, 256
            )
            hidden_size = round_up(hidden_size, 256)
        else:
            intermediate_size_per_partition_after_pad = round_up(
                intermediate_size_per_partition, 64
            )

        self.intermediate_size = intermediate_size_per_partition_after_pad
        self.hidden_size = hidden_size
        # Fused gate_up_proj (column parallel)
        w13_weight = torch.nn.Parameter(
            torch.zeros(
                num_experts,
                2 * intermediate_size_per_partition_after_pad,
                hidden_size // 2,
                dtype=weight_dtype,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w13_weight", w13_weight)
        set_weight_attrs(w13_weight, extra_weight_attrs)

        w13_weight_scale = torch.nn.Parameter(
            torch.zeros(
                num_experts,
                2 * intermediate_size_per_partition_after_pad,
                hidden_size // mxfp4_block,
                dtype=scale_dtype,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w13_weight_scale", w13_weight_scale)
        set_weight_attrs(w13_weight_scale, extra_weight_attrs)

        w13_bias = torch.nn.Parameter(
            torch.zeros(
                num_experts,
                2 * intermediate_size_per_partition_after_pad,
                dtype=torch.bfloat16,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w13_bias", w13_bias)
        set_weight_attrs(w13_bias, extra_weight_attrs)

        # down_proj (row parallel)
        w2_weight = torch.nn.Parameter(
            torch.zeros(
                num_experts,
                hidden_size,
                intermediate_size_per_partition_after_pad // 2,
                dtype=weight_dtype,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w2_weight", w2_weight)
        set_weight_attrs(w2_weight, extra_weight_attrs)

        w2_weight_scale = torch.nn.Parameter(
            torch.zeros(
                num_experts,
                hidden_size,
                intermediate_size_per_partition_after_pad // mxfp4_block,
                dtype=scale_dtype,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w2_weight_scale", w2_weight_scale)
        set_weight_attrs(w2_weight_scale, extra_weight_attrs)

        w2_bias = torch.nn.Parameter(
            torch.zeros(
                num_experts,
                hidden_size,
                dtype=torch.bfloat16,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w2_bias", w2_bias)
        set_weight_attrs(w2_bias, extra_weight_attrs)

    def process_weights_after_loading(self, layer):
        if self.mxfp4_backend == Mxfp4Backend.MARLIN:
            prepare_moe_fp4_layer_for_marlin(layer)
        elif (
            self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
            or self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16
        ):
            from flashinfer.fp4_quantization import nvfp4_block_scale_interleave
            from flashinfer.fused_moe.core import _maybe_get_cached_w2_permute_indices

            layer.gemm1_alpha = Parameter(
                torch.tensor([1.702] * self.num_experts, dtype=torch.float32).cuda(),
                requires_grad=False,
            )
            layer.gemm1_beta = Parameter(
                torch.tensor([1.0] * self.num_experts, dtype=torch.float32).cuda(),
                requires_grad=False,
            )
            layer.gemm1_clamp_limit = Parameter(
                torch.tensor([7.0] * self.num_experts, dtype=torch.float32).cuda(),
                requires_grad=False,
            )
            sf_block_size = 32  # mxfp4 block size

            assert (
                layer.w13_weight.dim() == 3
                and layer.w13_weight.shape[0] == self.num_experts
                and layer.w13_weight.shape[1] == self.intermediate_size * 2
                and layer.w13_weight.shape[2] == self.hidden_size // 2
            )
            assert (
                layer.w13_weight_scale.dim() == 3
                and layer.w13_weight_scale.shape[0] == self.num_experts
                and layer.w13_weight_scale.shape[1] == self.intermediate_size * 2
                and layer.w13_weight_scale.shape[2] == self.hidden_size // sf_block_size
            )
            assert (
                layer.w2_weight.dim() == 3
                and layer.w2_weight.shape[0] == self.num_experts
                and layer.w2_weight.shape[1] == self.hidden_size
                and layer.w2_weight.shape[2] == self.intermediate_size // 2
            )
            assert (
                layer.w2_weight_scale.dim() == 3
                and layer.w2_weight_scale.shape[1] == self.hidden_size
                and layer.w2_weight_scale.shape[2]
                == self.intermediate_size // sf_block_size
            )
            assert (
                layer.w13_bias.dim() == 2
                and layer.w13_bias.shape[0] == self.num_experts
                and layer.w13_bias.shape[1] == self.intermediate_size * 2
            )
            assert (
                layer.w2_bias.dim() == 2
                and layer.w2_bias.shape[0] == self.num_experts
                and layer.w2_bias.shape[1] == self.hidden_size
            )

            w13_weight_scale = layer.w13_weight_scale.data
            w2_weight_scale = layer.w2_weight_scale.data
            w13_weight = layer.w13_weight.data
            w2_weight = layer.w2_weight.data
            w13_bias = layer.w13_bias.data.to(torch.float32)
            w2_bias = layer.w2_bias.data.to(torch.float32)

            # Swap w1 and w3 as the definition of
            # swiglu is different in the trtllm-gen
            def swap_every_two_rows(x, axis=-1):
                shape = x.shape
                if axis < 0:
                    axis = len(shape) + axis

                # Create a new shape with pairs swapped along specified axis
                new_shape = list(shape)
                new_shape[axis] = shape[axis] // 2
                new_shape.insert(axis + 1, 2)

                # Reshape to expose pairs, swap them, and reshape back
                x = x.reshape(*new_shape)
                x = x.flip(axis + 1)
                new_shape = list(shape)
                return x.reshape(*new_shape)

            w13_weight_scale = swap_every_two_rows(w13_weight_scale, -2)
            w13_weight = swap_every_two_rows(w13_weight, -2)
            w13_bias = swap_every_two_rows(w13_bias, -1)

            # Do not interleave as the checkpoint is already interleaved

            # Shuffle weights and scaling factors for transposed mma output
            gemm1_weights_mxfp4_shuffled = []
            gemm1_scales_mxfp4_shuffled = []
            gemm2_weights_mxfp4_shuffled = []
            gemm2_scales_mxfp4_shuffled = []
            gemm1_bias_shuffled = []
            gemm2_bias_shuffled = []
            epilogue_tile_m = 128  # FIXME: this depends on the kernel internals
            for i in range(self.num_experts):
                # w13 weight shuffling
                permute_indices = _maybe_get_cached_w2_permute_indices(
                    self._cache_permute_indices,
                    w13_weight[i].view(torch.uint8),
                    epilogue_tile_m,
                )
                gemm1_weights_mxfp4_shuffled.append(
                    w13_weight[i]
                    .view(torch.uint8)[permute_indices.to(w13_weight.device)]
                    .contiguous()
                )
                # w13 scale shuffling
                permute_sf_indices = _maybe_get_cached_w2_permute_indices(
                    self._cache_permute_indices,
                    w13_weight_scale[i].view(torch.uint8),
                    epilogue_tile_m,
                    num_elts_per_sf=16,
                )
                gemm1_scales_mxfp4_shuffled.append(
                    nvfp4_block_scale_interleave(
                        w13_weight_scale[i]
                        .view(torch.uint8)[
                            permute_sf_indices.to(w13_weight_scale.device)
                        ]
                        .contiguous()
                    )
                )
                # w13 bias shuffling
                permute_bias_indices = _maybe_get_cached_w2_permute_indices(
                    self._cache_permute_indices,
                    w13_bias[i].clone().reshape(-1, 1),
                    epilogue_tile_m,
                )
                gemm1_bias_shuffled.append(
                    w13_bias[i]
                    .clone()
                    .reshape(-1, 1)[permute_bias_indices.to(w13_bias.device)]
                    .contiguous()
                )
                # w2 weight shuffling
                permute_indices = _maybe_get_cached_w2_permute_indices(
                    self._cache_permute_indices,
                    w2_weight[i].view(torch.uint8),
                    epilogue_tile_m,
                )
                gemm2_weights_mxfp4_shuffled.append(
                    w2_weight[i]
                    .view(torch.uint8)[permute_indices.to(w2_weight.device)]
                    .contiguous()
                )
                # w2 scale shuffling
                permute_sf_indices = _maybe_get_cached_w2_permute_indices(
                    self._cache_permute_indices,
                    w2_weight_scale[i].view(torch.uint8),
                    epilogue_tile_m,
                    num_elts_per_sf=16,
                )
                gemm2_scales_mxfp4_shuffled.append(
                    nvfp4_block_scale_interleave(
                        w2_weight_scale[i]
                        .view(torch.uint8)[
                            permute_sf_indices.to(w2_weight_scale.device)
                        ]
                        .contiguous()
                    )
                )
                # w2 bias shuffling
                permute_indices = _maybe_get_cached_w2_permute_indices(
                    self._cache_permute_indices,
                    w2_bias[i].clone().reshape(-1, 1),
                    epilogue_tile_m,
                )
                gemm2_bias_shuffled.append(
                    w2_bias[i]
                    .clone()
                    .reshape(-1, 1)[permute_indices.to(w2_bias.device)]
                    .contiguous()
                )

            w13_weight = torch.stack(gemm1_weights_mxfp4_shuffled)
            w13_weight_scale = (
                torch.stack(gemm1_scales_mxfp4_shuffled)
                .reshape(
                    self.num_experts,
                    2 * self.intermediate_size,
                    self.hidden_size // sf_block_size,
                )
                .view(torch.float8_e4m3fn)
            )

            w2_weight = torch.stack(gemm2_weights_mxfp4_shuffled)
            w2_weight_scale = (
                torch.stack(gemm2_scales_mxfp4_shuffled)
                .reshape(
                    self.num_experts,
                    self.hidden_size,
                    self.intermediate_size // sf_block_size,
                )
                .view(torch.float8_e4m3fn)
            )

            layer.w13_weight = Parameter(w13_weight, requires_grad=False)
            layer.w13_weight_scale = Parameter(w13_weight_scale, requires_grad=False)
            layer.w2_weight = Parameter(w2_weight, requires_grad=False)
            layer.w2_weight_scale = Parameter(w2_weight_scale, requires_grad=False)
            layer.w13_bias = Parameter(
                torch.stack(gemm1_bias_shuffled).reshape(self.num_experts, -1),
                requires_grad=False,
            )
            layer.w2_bias = Parameter(
                torch.stack(gemm2_bias_shuffled).reshape(self.num_experts, -1),
                requires_grad=False,
            )
        elif (
            self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS
            or self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16
        ):
            layer.gemm1_alpha = Parameter(
                torch.tensor([1.702] * self.num_experts, dtype=torch.float32).cuda(),
                requires_grad=False,
            )
            layer.gemm1_beta = Parameter(
                torch.tensor([1.0] * self.num_experts, dtype=torch.float32).cuda(),
                requires_grad=False,
            )
            layer.gemm1_clamp_limit = Parameter(
                torch.tensor([7.0] * self.num_experts, dtype=torch.float32).cuda(),
                requires_grad=False,
            )

            sf_block_size = 32  # mxfp4 block size

            # Common shape assertions
            assert (
                layer.w13_weight.dim() == 3
                and layer.w13_weight.shape[0] == self.num_experts
                and layer.w13_weight.shape[1] == self.intermediate_size * 2
                and layer.w13_weight.shape[2] == self.hidden_size // 2
            )
            assert (
                layer.w13_weight_scale.dim() == 3
                and layer.w13_weight_scale.shape[0] == self.num_experts
                and layer.w13_weight_scale.shape[1] == self.intermediate_size * 2
                and layer.w13_weight_scale.shape[2] == self.hidden_size // sf_block_size
            )
            assert (
                layer.w2_weight.dim() == 3
                and layer.w2_weight.shape[0] == self.num_experts
                and layer.w2_weight.shape[1] == self.hidden_size
                and layer.w2_weight.shape[2] == self.intermediate_size // 2
            )
            assert (
                layer.w2_weight_scale.dim() == 3
                and layer.w2_weight_scale.shape[1] == self.hidden_size
                and layer.w2_weight_scale.shape[2]
                == self.intermediate_size // sf_block_size
            )
            assert (
                layer.w13_bias.dim() == 2
                and layer.w13_bias.shape[0] == self.num_experts
                and layer.w13_bias.shape[1] == self.intermediate_size * 2
            )
            assert (
                layer.w2_bias.dim() == 2
                and layer.w2_bias.shape[0] == self.num_experts
                and layer.w2_bias.shape[1] == self.hidden_size
            )

            # De-interleave and swap for w13 weight, bias, and scales
            w13_w = layer.w13_weight.data
            gate_w, up_w = w13_w[:, ::2, :], w13_w[:, 1::2, :]
            deinterleaved_w13_w = torch.cat([gate_w, up_w], dim=1)
            w1_w, w3_w = torch.chunk(deinterleaved_w13_w, 2, dim=1)
            w13_weight_swapped = torch.cat([w3_w, w1_w], dim=1)

            w13_b = layer.w13_bias.data.to(torch.float32)
            gate_b, up_b = w13_b[:, ::2], w13_b[:, 1::2]
            deinterleaved_w13_b = torch.cat([gate_b, up_b], dim=1)
            b1, b3 = torch.chunk(deinterleaved_w13_b, 2, dim=-1)
            w13_bias_swapped = torch.cat([b3, b1], dim=-1).to(torch.bfloat16)

            w13_s = layer.w13_weight_scale.data
            gate_s, up_s = w13_s[:, ::2, :], w13_s[:, 1::2, :]
            deinterleaved_w13_s = torch.cat([gate_s, up_s], dim=1)
            s1, s3 = torch.chunk(deinterleaved_w13_s, 2, dim=1)
            w13_scale_swapped = torch.cat([s3, s1], dim=1)

            if self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS:
                from flashinfer import block_scale_interleave

                orig_shape = w13_scale_swapped.shape
                w13_scale_interleaved = block_scale_interleave(
                    w13_scale_swapped.view(torch.uint8)
                ).reshape(orig_shape)

                w2_s = layer.w2_weight_scale.data
                orig_shape = w2_s.shape
                w2_scale_interleaved = block_scale_interleave(
                    w2_s.view(torch.uint8)
                ).reshape(orig_shape)

                layer.w13_weight = Parameter(w13_weight_swapped, requires_grad=False)
                layer.w13_weight_scale = Parameter(
                    w13_scale_interleaved, requires_grad=False
                )
                layer.w13_bias = Parameter(w13_bias_swapped, requires_grad=False)
                layer.w2_weight_scale = Parameter(
                    w2_scale_interleaved, requires_grad=False
                )
            elif self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16:

                def _interleave_mxfp4_cutlass_sm90(w):
                    w_shape = w.shape
                    w_interleaved = w.reshape(
                        w_shape[0], w_shape[1], (w_shape[2] // 4), 4
                    )
                    w_interleaved = w_interleaved.permute(0, 2, 1, 3)
                    w_interleaved = w_interleaved.reshape(
                        w_shape[0], w_shape[2] // 4, w_shape[1] * 4
                    )
                    return w_interleaved

                w31_scales = w13_scale_swapped.to(torch.uint8).view(torch.uint8)
                w31_scales_interleaved = _interleave_mxfp4_cutlass_sm90(w31_scales)

                w2_weight_scale = layer.w2_weight_scale.data
                w2_scales = w2_weight_scale.to(torch.uint8).view(torch.uint8)
                w2_scales_interleaved = _interleave_mxfp4_cutlass_sm90(w2_scales)

                layer.w13_weight = torch.nn.Parameter(
                    torch.cat([w3_w, w1_w], dim=1), requires_grad=False
                )
                layer.w13_bias = torch.nn.Parameter(
                    w13_bias_swapped, requires_grad=False
                )
                layer.w13_weight_scale = torch.nn.Parameter(
                    w31_scales_interleaved, requires_grad=False
                )
                layer.w2_weight_scale = torch.nn.Parameter(
                    w2_scales_interleaved, requires_grad=False
                )
        elif self.mxfp4_backend == Mxfp4Backend.TRITON:
            from triton_kernels.matmul_ogs import FlexCtx, PrecisionConfig

            w13_bias = layer.w13_bias.to(torch.float32)
            w2_bias = layer.w2_bias.to(torch.float32)

            layer.w13_bias = Parameter(w13_bias, requires_grad=False)
            layer.w2_bias = Parameter(w2_bias, requires_grad=False)

            # Ideally we'd use FusedMoEModularKernel.prepare_finalize object
            # (stored in self.fused_experts) to determine if the MoE has a
            # batched activation format. As self.fused_experts is not
            # initialized at this point, we resort to checking the MoE config
            # directly.
            is_batched_moe = self.moe.use_pplx_kernels or self.moe.use_deepep_ll_kernels
            if is_batched_moe:
                num_warps = 4 if envs.VLLM_MOE_DP_CHUNK_SIZE <= 512 else 8
            else:
                num_warps = 8

            w13_weight, w13_flex, w13_scale = _swizzle_mxfp4(
                layer.w13_weight, layer.w13_weight_scale, num_warps
            )
            w2_weight, w2_flex, w2_scale = _swizzle_mxfp4(
                layer.w2_weight, layer.w2_weight_scale, num_warps
            )

            self.w13_precision_config = PrecisionConfig(
                weight_scale=w13_scale, flex_ctx=FlexCtx(rhs_data=w13_flex)
            )
            self.w2_precision_config = PrecisionConfig(
                weight_scale=w2_scale, flex_ctx=FlexCtx(rhs_data=w2_flex)
            )

            self.w13_weight_triton_tensor = w13_weight
            self.w2_weight_triton_tensor = w2_weight

            # need to delete the original weights to save memory on single GPU
            del layer.w13_weight
            del layer.w2_weight
            layer.w13_weight = None
            layer.w2_weight = None
            torch.cuda.empty_cache()
        else:
            raise ValueError(f"Unsupported backend: {self.mxfp4_backend}")

    def _get_tile_tokens_dim(self, x: torch.Tensor, top_k: int):
        # Number of tokens in the input tensor.
        num_tokens = x.shape[0]
        # Factor to account for the imbalance of the experts.
        # factor equals to the
        # max_real_num_tokens_per_expert / perfect_num_tokens_per_expert
        # - 1.0 means perfect expert distribution.
        # - > 1.0 means some experts have more
        #     tokens than the perfect distribution.
        # - < 1.0 does not make sense.
        imbalance_factor = 1.3
        # Calculate the number of tokens per expert
        # assuming perfect distribution.
        num_tokens_per_expert = (num_tokens * top_k) // self.num_experts
        # Apply the imbalance factor.
        num_tokens_per_expert = int(num_tokens_per_expert * imbalance_factor)
        # And pad the number to the next power of 2.
        tile_tokens_dim = next_power_of_2(num_tokens_per_expert)
        # Cap to 8-64 tokens per CTA tile
        # as it's the range supported by the kernel.
        tile_tokens_dim = min(max(tile_tokens_dim, 8), 64)

        return tile_tokens_dim

    def get_fused_moe_quant_config(
        self, layer: torch.nn.Module
    ) -> Optional[FusedMoEQuantConfig]:
        if self.mxfp4_backend == Mxfp4Backend.MARLIN:
            return mxfp4_w4a16_moe_quant_config(
                w1_bias=layer.w13_bias,
                w2_bias=layer.w2_bias,
                w1_scale=layer.w13_weight_scale,
                w2_scale=layer.w2_weight_scale,
            )
        elif self.mxfp4_backend == Mxfp4Backend.TRITON:
            w1_scale = self.w13_precision_config
            w2_scale = self.w2_precision_config
            return mxfp4_w4a16_moe_quant_config(
                w1_bias=layer.w13_bias,
                w2_bias=layer.w2_bias,
                w1_scale=w1_scale,
                w2_scale=w2_scale,
            )
        else:
            w1_scale = layer.w13_weight_scale
            w2_scale = layer.w2_weight_scale
            return ocp_mx_moe_quant_config(
                quant_dtype="mxfp4",
                w1_bias=layer.w13_bias,
                w2_bias=layer.w2_bias,
                w1_scale=w1_scale,
                w2_scale=w2_scale,
            )

    def select_gemm_impl(
        self,
        prepare_finalize: mk.FusedMoEPrepareAndFinalize,
        layer: torch.nn.Module,
    ) -> mk.FusedMoEPermuteExpertsUnpermute:
        if (
            prepare_finalize.activation_format
            == mk.FusedMoEActivationFormat.BatchedExperts
        ):
            raise NotImplementedError(
                "Mxfp4 does not support batched experts format for EP"
            )
        else:
            assert self.moe_quant_config is not None
            if (
                self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
                or self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16
            ):
                # B200 code-path
                kwargs = {
                    "gemm1_alpha": layer.gemm1_alpha,
                    "gemm1_beta": layer.gemm1_beta,
                    "gemm1_clamp_limit": layer.gemm1_clamp_limit,
                    # TODO(bnell): part of quant_config
                    "max_capture_size": self.max_capture_size,
                }
                return TrtLlmGenExperts(self.moe, self.moe_quant_config, **kwargs)
            elif self.mxfp4_backend == Mxfp4Backend.MARLIN:
                return MarlinExperts(self.moe_quant_config)
            else:
                return OAITritonExperts(self.moe_quant_config)

    def _route_and_experts(
        self,
        layer: torch.nn.Module,
        x: torch.Tensor,
        router_logits: torch.Tensor,
        top_k: int,
        renormalize: bool,
        use_grouped_topk: bool = False,
        topk_group: Optional[int] = None,
        num_expert_group: Optional[int] = None,
        global_num_experts: int = -1,
        expert_map: Optional[torch.Tensor] = None,
        custom_routing_function: Optional[Callable] = None,
        scoring_func: str = "softmax",
        e_score_correction_bias: Optional[torch.Tensor] = None,
        apply_router_weight_on_input: bool = False,
        activation: str = "silu",
        enable_eplb: bool = False,
        expert_load_view: Optional[torch.Tensor] = None,
        logical_to_physical_map: Optional[torch.Tensor] = None,
        logical_replica_count: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        assert isinstance(self.fused_experts, mk.FusedMoEModularKernel)

        topk_weights, topk_ids, _ = FusedMoE.select_experts(
            hidden_states=x,
            router_logits=router_logits,
            use_grouped_topk=use_grouped_topk,
            top_k=top_k,
            renormalize=renormalize,
            topk_group=topk_group,
            num_expert_group=num_expert_group,
            custom_routing_function=custom_routing_function,
            scoring_func=scoring_func,
            e_score_correction_bias=e_score_correction_bias,
            indices_type=self.topk_indices_dtype,
            enable_eplb=enable_eplb,
            expert_map=expert_map,
            expert_load_view=expert_load_view,
            logical_to_physical_map=logical_to_physical_map,
            logical_replica_count=logical_replica_count,
        )

        w13_weight = (
            self.w13_weight_triton_tensor
            if layer.w13_weight is None
            else layer.w13_weight
        )
        w2_weight = (
            self.w2_weight_triton_tensor if layer.w2_weight is None else layer.w2_weight
        )
        assert all([w is not None for w in [w13_weight, w2_weight]])

        return self.fused_experts(
            hidden_states=x,
            w1=w13_weight,
            w2=w2_weight,
            topk_weights=topk_weights,
            topk_ids=topk_ids,
            inplace=True,
            activation=activation,
            global_num_experts=global_num_experts,
            expert_map=expert_map,
            apply_router_weight_on_input=apply_router_weight_on_input,
        )

    def apply(
        self,
        layer: torch.nn.Module,
        x: torch.Tensor,
        router_logits: torch.Tensor,
        top_k: int,
        renormalize: bool,
        use_grouped_topk: bool = False,
        topk_group: Optional[int] = None,
        num_expert_group: Optional[int] = None,
        global_num_experts: int = -1,
        expert_map: Optional[torch.Tensor] = None,
        custom_routing_function: Optional[Callable] = None,
        scoring_func: str = "softmax",
        routed_scaling_factor: float = 1.0,
        e_score_correction_bias: Optional[torch.Tensor] = None,
        apply_router_weight_on_input: bool = False,
        activation: str = "silu",
        enable_eplb: bool = False,
        expert_load_view: Optional[torch.Tensor] = None,
        logical_to_physical_map: Optional[torch.Tensor] = None,
        logical_replica_count: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
        if enable_eplb:
            raise NotImplementedError("EPLB is not supported for mxfp4")

        if self.fused_experts is not None:
            return self._route_and_experts(
                layer,
                x,
                router_logits,
                top_k,
                renormalize,
                use_grouped_topk,
                topk_group,
                num_expert_group,
                global_num_experts,
                expert_map,
                custom_routing_function,
                scoring_func,
                e_score_correction_bias,
                apply_router_weight_on_input,
                activation,
                enable_eplb,
                expert_load_view,
                logical_to_physical_map,
                logical_replica_count,
            )

        if self.mxfp4_backend == Mxfp4Backend.MARLIN:
            topk_weights, topk_ids, _ = FusedMoE.select_experts(
                hidden_states=x,
                router_logits=router_logits,
                use_grouped_topk=use_grouped_topk,
                top_k=top_k,
                renormalize=renormalize,
                topk_group=topk_group,
                num_expert_group=num_expert_group,
                custom_routing_function=custom_routing_function,
                scoring_func=scoring_func,
                routed_scaling_factor=routed_scaling_factor,
                e_score_correction_bias=e_score_correction_bias,
            )

            return torch.ops.vllm.fused_marlin_moe(
                x,
                layer.w13_weight,
                layer.w2_weight,
                layer.w13_bias,
                layer.w2_bias,
                layer.w13_weight_scale,
                layer.w2_weight_scale,
                router_logits,
                topk_weights,
                topk_ids,
                global_scale1=None,
                global_scale2=None,
                quant_type_id=scalar_types.float4_e2m1f.id,
                apply_router_weight_on_input=apply_router_weight_on_input,
                global_num_experts=global_num_experts,
                activation=activation,
                expert_map=expert_map,
            )

        assert _can_support_mxfp4(
            use_grouped_topk,
            topk_group,
            num_expert_group,
            expert_map,
            custom_routing_function,
            e_score_correction_bias,
            apply_router_weight_on_input,
            scoring_func,
            activation,
            expert_load_view,
            logical_to_physical_map,
            logical_replica_count,
        ), "MXFP4 are not supported with this configuration."

        if (
            self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
            or self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16
        ):
            from flashinfer import trtllm_fp4_block_scale_moe

            if self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16:
                assert x.dtype == torch.bfloat16
                x_quant = x
                x_scale = None
            elif self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM:
                from flashinfer import mxfp8_quantize

                x_quant, x_scale = mxfp8_quantize(x, False)  # to mxfp8
                x_scale = x_scale.view(torch.float8_e4m3fn).reshape(*x.shape[:-1], -1)

            trtllm_gen_output = trtllm_fp4_block_scale_moe(
                router_logits.to(torch.bfloat16),
                None,  # routing_bias
                x_quant,
                x_scale,
                layer.w13_weight,  # uint8 (e2m1 x 2)
                layer.w13_weight_scale,  # uint8 (e4m3 x 2)
                layer.w13_bias,  # fp32 per expert per channel
                layer.gemm1_alpha,  # fp32 per expert
                layer.gemm1_beta,  # fp32 per expert
                layer.gemm1_clamp_limit,  # fp32 per expert
                layer.w2_weight,  # uint8 (e2m1 x 2)
                layer.w2_weight_scale,  # ue8m0
                layer.w2_bias,  # fp32 per expert per channel
                None,  # output1_scale_scalar
                None,  # output1_scale_gate_scalar
                None,  # output2_scale_scalar
                global_num_experts,
                top_k,
                None,  # n_group
                None,  # topk_group
                self.intermediate_size,  # padded to multiple of 256
                layer.ep_rank * layer.local_num_experts,  # local_expert_offset
                self.num_experts,  # local num experts
                None,
                self._get_tile_tokens_dim(x, top_k),
                1 if renormalize else 0,  # routing_method_type, renormalize
                True,  # do finalize
                tune_max_num_tokens=self.max_capture_size,
            )[0]
            return trtllm_gen_output
        elif (
            self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS
            or self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16
        ):
            from vllm.utils.flashinfer import flashinfer_cutlass_fused_moe

            topk_weights, topk_ids, _ = FusedMoE.select_experts(
                hidden_states=x,
                router_logits=router_logits,
                use_grouped_topk=use_grouped_topk,
                top_k=top_k,
                renormalize=renormalize,
                topk_group=topk_group,
                num_expert_group=num_expert_group,
                custom_routing_function=custom_routing_function,
                scoring_func=scoring_func,
                e_score_correction_bias=e_score_correction_bias,
            )

            # Backend-specific preparation
            if self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS:
                from flashinfer import mxfp8_quantize

                x_quant, x_scale = mxfp8_quantize(x, True, 32)

                fake_input_scale = torch.ones(self.num_experts, device=x.device)
                quant_scales = [
                    layer.w13_weight_scale.contiguous().view(torch.int32),
                    fake_input_scale,
                    layer.w2_weight_scale.contiguous().view(torch.int32),
                    fake_input_scale,
                ]

                fi_input = x_quant
                extra_kwargs = dict(
                    use_mxfp8_act_scaling=True,
                    input_sf=x_scale,
                    fc1_expert_weights=layer.w13_weight.contiguous().view(torch.long),
                    fc2_expert_weights=layer.w2_weight.contiguous().view(torch.long),
                )
            elif self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16:
                assert x.dtype == torch.bfloat16

                quant_scales = [
                    layer.w13_weight_scale,
                    layer.w2_weight_scale,
                ]

                fi_input = x
                extra_kwargs = dict(
                    use_w4_group_scaling=True,
                    fc1_expert_weights=layer.w13_weight,
                    fc2_expert_weights=layer.w2_weight,
                )

            output = torch.empty_like(x, dtype=torch.bfloat16)
            _ = flashinfer_cutlass_fused_moe(
                input=fi_input,
                token_selected_experts=topk_ids.to(torch.int).contiguous(),
                token_final_scales=topk_weights,
                output_dtype=torch.bfloat16,
                output=output,
                quant_scales=quant_scales,
                fc1_expert_biases=layer.w13_bias,
                fc2_expert_biases=layer.w2_bias,
                swiglu_alpha=layer.gemm1_alpha,
                swiglu_beta=layer.gemm1_beta,
                swiglu_limit=layer.gemm1_clamp_limit,
                tp_size=self.moe.tp_size,
                tp_rank=self.moe.tp_rank,
                ep_size=self.moe.ep_size,
                ep_rank=self.moe.ep_rank,
                tune_max_num_tokens=self.max_capture_size,
                **extra_kwargs,
            )

            return output
        elif self.mxfp4_backend == Mxfp4Backend.TRITON:
            from vllm.model_executor.layers.fused_moe.gpt_oss_triton_kernels_moe import (  # noqa: E501
                triton_kernel_moe_forward,
            )

            return triton_kernel_moe_forward(
                hidden_states=x,
                w1=self.w13_weight_triton_tensor,
                w2=self.w2_weight_triton_tensor,
                gating_output=router_logits,
                topk=top_k,
                renormalize=renormalize,
                global_num_experts=global_num_experts,
                expert_map=expert_map,
                quant_config=self.moe_quant_config,
                apply_router_weight_on_input=apply_router_weight_on_input,
            )
        else:
            raise ValueError(f"Unsupported backend: {self.mxfp4_backend}")

_cache_permute_indices instance-attribute

_cache_permute_indices: dict[Size, Tensor] = {}

max_capture_size instance-attribute

max_capture_size = max_capture_size

moe instance-attribute

moe = moe

mxfp4_backend instance-attribute

mxfp4_backend = get_mxfp4_backend()

topk_indices_dtype instance-attribute

topk_indices_dtype = None

__init__

__init__(moe: FusedMoEConfig)
Source code in vllm/model_executor/layers/quantization/mxfp4.py
def __init__(self, moe: FusedMoEConfig):
    super().__init__(moe)
    self.topk_indices_dtype = None
    self.moe = moe
    self.mxfp4_backend = get_mxfp4_backend()
    self.max_capture_size = (
        get_current_vllm_config().compilation_config.max_capture_size
    )

    assert self.mxfp4_backend != Mxfp4Backend.NONE, (
        "No MXFP4 MoE backend (FlashInfer/Marlin/Triton) available."
        "Please check your environment and try again."
    )
    self._cache_permute_indices: dict[torch.Size, torch.Tensor] = {}

_get_tile_tokens_dim

_get_tile_tokens_dim(x: Tensor, top_k: int)
Source code in vllm/model_executor/layers/quantization/mxfp4.py
def _get_tile_tokens_dim(self, x: torch.Tensor, top_k: int):
    # Number of tokens in the input tensor.
    num_tokens = x.shape[0]
    # Factor to account for the imbalance of the experts.
    # factor equals to the
    # max_real_num_tokens_per_expert / perfect_num_tokens_per_expert
    # - 1.0 means perfect expert distribution.
    # - > 1.0 means some experts have more
    #     tokens than the perfect distribution.
    # - < 1.0 does not make sense.
    imbalance_factor = 1.3
    # Calculate the number of tokens per expert
    # assuming perfect distribution.
    num_tokens_per_expert = (num_tokens * top_k) // self.num_experts
    # Apply the imbalance factor.
    num_tokens_per_expert = int(num_tokens_per_expert * imbalance_factor)
    # And pad the number to the next power of 2.
    tile_tokens_dim = next_power_of_2(num_tokens_per_expert)
    # Cap to 8-64 tokens per CTA tile
    # as it's the range supported by the kernel.
    tile_tokens_dim = min(max(tile_tokens_dim, 8), 64)

    return tile_tokens_dim

_route_and_experts

_route_and_experts(
    layer: Module,
    x: Tensor,
    router_logits: Tensor,
    top_k: int,
    renormalize: bool,
    use_grouped_topk: bool = False,
    topk_group: Optional[int] = None,
    num_expert_group: Optional[int] = None,
    global_num_experts: int = -1,
    expert_map: Optional[Tensor] = None,
    custom_routing_function: Optional[Callable] = None,
    scoring_func: str = "softmax",
    e_score_correction_bias: Optional[Tensor] = None,
    apply_router_weight_on_input: bool = False,
    activation: str = "silu",
    enable_eplb: bool = False,
    expert_load_view: Optional[Tensor] = None,
    logical_to_physical_map: Optional[Tensor] = None,
    logical_replica_count: Optional[Tensor] = None,
) -> Tensor
Source code in vllm/model_executor/layers/quantization/mxfp4.py
def _route_and_experts(
    self,
    layer: torch.nn.Module,
    x: torch.Tensor,
    router_logits: torch.Tensor,
    top_k: int,
    renormalize: bool,
    use_grouped_topk: bool = False,
    topk_group: Optional[int] = None,
    num_expert_group: Optional[int] = None,
    global_num_experts: int = -1,
    expert_map: Optional[torch.Tensor] = None,
    custom_routing_function: Optional[Callable] = None,
    scoring_func: str = "softmax",
    e_score_correction_bias: Optional[torch.Tensor] = None,
    apply_router_weight_on_input: bool = False,
    activation: str = "silu",
    enable_eplb: bool = False,
    expert_load_view: Optional[torch.Tensor] = None,
    logical_to_physical_map: Optional[torch.Tensor] = None,
    logical_replica_count: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    assert isinstance(self.fused_experts, mk.FusedMoEModularKernel)

    topk_weights, topk_ids, _ = FusedMoE.select_experts(
        hidden_states=x,
        router_logits=router_logits,
        use_grouped_topk=use_grouped_topk,
        top_k=top_k,
        renormalize=renormalize,
        topk_group=topk_group,
        num_expert_group=num_expert_group,
        custom_routing_function=custom_routing_function,
        scoring_func=scoring_func,
        e_score_correction_bias=e_score_correction_bias,
        indices_type=self.topk_indices_dtype,
        enable_eplb=enable_eplb,
        expert_map=expert_map,
        expert_load_view=expert_load_view,
        logical_to_physical_map=logical_to_physical_map,
        logical_replica_count=logical_replica_count,
    )

    w13_weight = (
        self.w13_weight_triton_tensor
        if layer.w13_weight is None
        else layer.w13_weight
    )
    w2_weight = (
        self.w2_weight_triton_tensor if layer.w2_weight is None else layer.w2_weight
    )
    assert all([w is not None for w in [w13_weight, w2_weight]])

    return self.fused_experts(
        hidden_states=x,
        w1=w13_weight,
        w2=w2_weight,
        topk_weights=topk_weights,
        topk_ids=topk_ids,
        inplace=True,
        activation=activation,
        global_num_experts=global_num_experts,
        expert_map=expert_map,
        apply_router_weight_on_input=apply_router_weight_on_input,
    )

apply

apply(
    layer: Module,
    x: Tensor,
    router_logits: Tensor,
    top_k: int,
    renormalize: bool,
    use_grouped_topk: bool = False,
    topk_group: Optional[int] = None,
    num_expert_group: Optional[int] = None,
    global_num_experts: int = -1,
    expert_map: Optional[Tensor] = None,
    custom_routing_function: Optional[Callable] = None,
    scoring_func: str = "softmax",
    routed_scaling_factor: float = 1.0,
    e_score_correction_bias: Optional[Tensor] = None,
    apply_router_weight_on_input: bool = False,
    activation: str = "silu",
    enable_eplb: bool = False,
    expert_load_view: Optional[Tensor] = None,
    logical_to_physical_map: Optional[Tensor] = None,
    logical_replica_count: Optional[Tensor] = None,
) -> Union[Tensor, tuple[Tensor, Tensor]]
Source code in vllm/model_executor/layers/quantization/mxfp4.py
def apply(
    self,
    layer: torch.nn.Module,
    x: torch.Tensor,
    router_logits: torch.Tensor,
    top_k: int,
    renormalize: bool,
    use_grouped_topk: bool = False,
    topk_group: Optional[int] = None,
    num_expert_group: Optional[int] = None,
    global_num_experts: int = -1,
    expert_map: Optional[torch.Tensor] = None,
    custom_routing_function: Optional[Callable] = None,
    scoring_func: str = "softmax",
    routed_scaling_factor: float = 1.0,
    e_score_correction_bias: Optional[torch.Tensor] = None,
    apply_router_weight_on_input: bool = False,
    activation: str = "silu",
    enable_eplb: bool = False,
    expert_load_view: Optional[torch.Tensor] = None,
    logical_to_physical_map: Optional[torch.Tensor] = None,
    logical_replica_count: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
    if enable_eplb:
        raise NotImplementedError("EPLB is not supported for mxfp4")

    if self.fused_experts is not None:
        return self._route_and_experts(
            layer,
            x,
            router_logits,
            top_k,
            renormalize,
            use_grouped_topk,
            topk_group,
            num_expert_group,
            global_num_experts,
            expert_map,
            custom_routing_function,
            scoring_func,
            e_score_correction_bias,
            apply_router_weight_on_input,
            activation,
            enable_eplb,
            expert_load_view,
            logical_to_physical_map,
            logical_replica_count,
        )

    if self.mxfp4_backend == Mxfp4Backend.MARLIN:
        topk_weights, topk_ids, _ = FusedMoE.select_experts(
            hidden_states=x,
            router_logits=router_logits,
            use_grouped_topk=use_grouped_topk,
            top_k=top_k,
            renormalize=renormalize,
            topk_group=topk_group,
            num_expert_group=num_expert_group,
            custom_routing_function=custom_routing_function,
            scoring_func=scoring_func,
            routed_scaling_factor=routed_scaling_factor,
            e_score_correction_bias=e_score_correction_bias,
        )

        return torch.ops.vllm.fused_marlin_moe(
            x,
            layer.w13_weight,
            layer.w2_weight,
            layer.w13_bias,
            layer.w2_bias,
            layer.w13_weight_scale,
            layer.w2_weight_scale,
            router_logits,
            topk_weights,
            topk_ids,
            global_scale1=None,
            global_scale2=None,
            quant_type_id=scalar_types.float4_e2m1f.id,
            apply_router_weight_on_input=apply_router_weight_on_input,
            global_num_experts=global_num_experts,
            activation=activation,
            expert_map=expert_map,
        )

    assert _can_support_mxfp4(
        use_grouped_topk,
        topk_group,
        num_expert_group,
        expert_map,
        custom_routing_function,
        e_score_correction_bias,
        apply_router_weight_on_input,
        scoring_func,
        activation,
        expert_load_view,
        logical_to_physical_map,
        logical_replica_count,
    ), "MXFP4 are not supported with this configuration."

    if (
        self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
        or self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16
    ):
        from flashinfer import trtllm_fp4_block_scale_moe

        if self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16:
            assert x.dtype == torch.bfloat16
            x_quant = x
            x_scale = None
        elif self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM:
            from flashinfer import mxfp8_quantize

            x_quant, x_scale = mxfp8_quantize(x, False)  # to mxfp8
            x_scale = x_scale.view(torch.float8_e4m3fn).reshape(*x.shape[:-1], -1)

        trtllm_gen_output = trtllm_fp4_block_scale_moe(
            router_logits.to(torch.bfloat16),
            None,  # routing_bias
            x_quant,
            x_scale,
            layer.w13_weight,  # uint8 (e2m1 x 2)
            layer.w13_weight_scale,  # uint8 (e4m3 x 2)
            layer.w13_bias,  # fp32 per expert per channel
            layer.gemm1_alpha,  # fp32 per expert
            layer.gemm1_beta,  # fp32 per expert
            layer.gemm1_clamp_limit,  # fp32 per expert
            layer.w2_weight,  # uint8 (e2m1 x 2)
            layer.w2_weight_scale,  # ue8m0
            layer.w2_bias,  # fp32 per expert per channel
            None,  # output1_scale_scalar
            None,  # output1_scale_gate_scalar
            None,  # output2_scale_scalar
            global_num_experts,
            top_k,
            None,  # n_group
            None,  # topk_group
            self.intermediate_size,  # padded to multiple of 256
            layer.ep_rank * layer.local_num_experts,  # local_expert_offset
            self.num_experts,  # local num experts
            None,
            self._get_tile_tokens_dim(x, top_k),
            1 if renormalize else 0,  # routing_method_type, renormalize
            True,  # do finalize
            tune_max_num_tokens=self.max_capture_size,
        )[0]
        return trtllm_gen_output
    elif (
        self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS
        or self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16
    ):
        from vllm.utils.flashinfer import flashinfer_cutlass_fused_moe

        topk_weights, topk_ids, _ = FusedMoE.select_experts(
            hidden_states=x,
            router_logits=router_logits,
            use_grouped_topk=use_grouped_topk,
            top_k=top_k,
            renormalize=renormalize,
            topk_group=topk_group,
            num_expert_group=num_expert_group,
            custom_routing_function=custom_routing_function,
            scoring_func=scoring_func,
            e_score_correction_bias=e_score_correction_bias,
        )

        # Backend-specific preparation
        if self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS:
            from flashinfer import mxfp8_quantize

            x_quant, x_scale = mxfp8_quantize(x, True, 32)

            fake_input_scale = torch.ones(self.num_experts, device=x.device)
            quant_scales = [
                layer.w13_weight_scale.contiguous().view(torch.int32),
                fake_input_scale,
                layer.w2_weight_scale.contiguous().view(torch.int32),
                fake_input_scale,
            ]

            fi_input = x_quant
            extra_kwargs = dict(
                use_mxfp8_act_scaling=True,
                input_sf=x_scale,
                fc1_expert_weights=layer.w13_weight.contiguous().view(torch.long),
                fc2_expert_weights=layer.w2_weight.contiguous().view(torch.long),
            )
        elif self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16:
            assert x.dtype == torch.bfloat16

            quant_scales = [
                layer.w13_weight_scale,
                layer.w2_weight_scale,
            ]

            fi_input = x
            extra_kwargs = dict(
                use_w4_group_scaling=True,
                fc1_expert_weights=layer.w13_weight,
                fc2_expert_weights=layer.w2_weight,
            )

        output = torch.empty_like(x, dtype=torch.bfloat16)
        _ = flashinfer_cutlass_fused_moe(
            input=fi_input,
            token_selected_experts=topk_ids.to(torch.int).contiguous(),
            token_final_scales=topk_weights,
            output_dtype=torch.bfloat16,
            output=output,
            quant_scales=quant_scales,
            fc1_expert_biases=layer.w13_bias,
            fc2_expert_biases=layer.w2_bias,
            swiglu_alpha=layer.gemm1_alpha,
            swiglu_beta=layer.gemm1_beta,
            swiglu_limit=layer.gemm1_clamp_limit,
            tp_size=self.moe.tp_size,
            tp_rank=self.moe.tp_rank,
            ep_size=self.moe.ep_size,
            ep_rank=self.moe.ep_rank,
            tune_max_num_tokens=self.max_capture_size,
            **extra_kwargs,
        )

        return output
    elif self.mxfp4_backend == Mxfp4Backend.TRITON:
        from vllm.model_executor.layers.fused_moe.gpt_oss_triton_kernels_moe import (  # noqa: E501
            triton_kernel_moe_forward,
        )

        return triton_kernel_moe_forward(
            hidden_states=x,
            w1=self.w13_weight_triton_tensor,
            w2=self.w2_weight_triton_tensor,
            gating_output=router_logits,
            topk=top_k,
            renormalize=renormalize,
            global_num_experts=global_num_experts,
            expert_map=expert_map,
            quant_config=self.moe_quant_config,
            apply_router_weight_on_input=apply_router_weight_on_input,
        )
    else:
        raise ValueError(f"Unsupported backend: {self.mxfp4_backend}")

create_weights

create_weights(
    layer: Module,
    num_experts: int,
    hidden_size: int,
    intermediate_size_per_partition: int,
    params_dtype: dtype,
    **extra_weight_attrs,
)
Source code in vllm/model_executor/layers/quantization/mxfp4.py
def create_weights(
    self,
    layer: torch.nn.Module,
    num_experts: int,
    hidden_size: int,
    intermediate_size_per_partition: int,
    params_dtype: torch.dtype,
    **extra_weight_attrs,
):
    self.num_experts = num_experts
    weight_dtype = torch.uint8
    scale_dtype = torch.uint8

    # FIXME (zyongye): ship after torch and safetensors support mxfp4
    # is_torch_mxfp4_available = (
    #     hasattr(torch, "float4_e2m1fn_x2") and
    #     hasattr(torch, "float8_e8m0fnu"))
    # if is_torch_mxfp4_available:
    #     weight_dtype = torch.float4_e2m1fn_x2
    #     scale_dtype = torch.float8_e8m0fnu

    mxfp4_block = 32

    intermediate_size_per_partition_after_pad = intermediate_size_per_partition
    if self.mxfp4_backend == Mxfp4Backend.MARLIN:
        # The moe marlin kernel requires that for each linear
        # n % 256 == 0 and k % 128 == 0.
        # In gate_up_proj:
        #    n = 2 * intermediate_size_per_partition_after_pad
        #    k = hidden_size
        # In down_proj
        #    n = hidden_size
        #    k = intermediate_size_per_partition_after_pad
        intermediate_size_per_partition_after_pad = round_up(
            intermediate_size_per_partition, 128
        )
        hidden_size = round_up(hidden_size, 256)

        layer.params_dtype = params_dtype
        layer.num_experts = num_experts
        layer.hidden_size = hidden_size
        layer.intermediate_size_per_partition = (
            intermediate_size_per_partition_after_pad
        )
    elif (
        self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
        or self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16
    ):
        # pad the intermediate size to be a multiple of 2 * mxfp4_block
        # for to hold non-uniform sharded tensor as well as swizzling
        # other padding to increase performance
        intermediate_size_per_partition_after_pad = round_up(
            intermediate_size_per_partition, 256
        )
        hidden_size = round_up(hidden_size, 256)
    elif (
        self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS
        or self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16
    ):
        intermediate_size_per_partition_after_pad = round_up(
            intermediate_size_per_partition, 128
        )
        hidden_size = round_up(hidden_size, 128)
    elif current_platform.is_rocm():
        intermediate_size_per_partition_after_pad = round_up(
            intermediate_size_per_partition, 256
        )
        hidden_size = round_up(hidden_size, 256)
    else:
        intermediate_size_per_partition_after_pad = round_up(
            intermediate_size_per_partition, 64
        )

    self.intermediate_size = intermediate_size_per_partition_after_pad
    self.hidden_size = hidden_size
    # Fused gate_up_proj (column parallel)
    w13_weight = torch.nn.Parameter(
        torch.zeros(
            num_experts,
            2 * intermediate_size_per_partition_after_pad,
            hidden_size // 2,
            dtype=weight_dtype,
        ),
        requires_grad=False,
    )
    layer.register_parameter("w13_weight", w13_weight)
    set_weight_attrs(w13_weight, extra_weight_attrs)

    w13_weight_scale = torch.nn.Parameter(
        torch.zeros(
            num_experts,
            2 * intermediate_size_per_partition_after_pad,
            hidden_size // mxfp4_block,
            dtype=scale_dtype,
        ),
        requires_grad=False,
    )
    layer.register_parameter("w13_weight_scale", w13_weight_scale)
    set_weight_attrs(w13_weight_scale, extra_weight_attrs)

    w13_bias = torch.nn.Parameter(
        torch.zeros(
            num_experts,
            2 * intermediate_size_per_partition_after_pad,
            dtype=torch.bfloat16,
        ),
        requires_grad=False,
    )
    layer.register_parameter("w13_bias", w13_bias)
    set_weight_attrs(w13_bias, extra_weight_attrs)

    # down_proj (row parallel)
    w2_weight = torch.nn.Parameter(
        torch.zeros(
            num_experts,
            hidden_size,
            intermediate_size_per_partition_after_pad // 2,
            dtype=weight_dtype,
        ),
        requires_grad=False,
    )
    layer.register_parameter("w2_weight", w2_weight)
    set_weight_attrs(w2_weight, extra_weight_attrs)

    w2_weight_scale = torch.nn.Parameter(
        torch.zeros(
            num_experts,
            hidden_size,
            intermediate_size_per_partition_after_pad // mxfp4_block,
            dtype=scale_dtype,
        ),
        requires_grad=False,
    )
    layer.register_parameter("w2_weight_scale", w2_weight_scale)
    set_weight_attrs(w2_weight_scale, extra_weight_attrs)

    w2_bias = torch.nn.Parameter(
        torch.zeros(
            num_experts,
            hidden_size,
            dtype=torch.bfloat16,
        ),
        requires_grad=False,
    )
    layer.register_parameter("w2_bias", w2_bias)
    set_weight_attrs(w2_bias, extra_weight_attrs)

get_fused_moe_quant_config

get_fused_moe_quant_config(
    layer: Module,
) -> Optional[FusedMoEQuantConfig]
Source code in vllm/model_executor/layers/quantization/mxfp4.py
def get_fused_moe_quant_config(
    self, layer: torch.nn.Module
) -> Optional[FusedMoEQuantConfig]:
    if self.mxfp4_backend == Mxfp4Backend.MARLIN:
        return mxfp4_w4a16_moe_quant_config(
            w1_bias=layer.w13_bias,
            w2_bias=layer.w2_bias,
            w1_scale=layer.w13_weight_scale,
            w2_scale=layer.w2_weight_scale,
        )
    elif self.mxfp4_backend == Mxfp4Backend.TRITON:
        w1_scale = self.w13_precision_config
        w2_scale = self.w2_precision_config
        return mxfp4_w4a16_moe_quant_config(
            w1_bias=layer.w13_bias,
            w2_bias=layer.w2_bias,
            w1_scale=w1_scale,
            w2_scale=w2_scale,
        )
    else:
        w1_scale = layer.w13_weight_scale
        w2_scale = layer.w2_weight_scale
        return ocp_mx_moe_quant_config(
            quant_dtype="mxfp4",
            w1_bias=layer.w13_bias,
            w2_bias=layer.w2_bias,
            w1_scale=w1_scale,
            w2_scale=w2_scale,
        )

process_weights_after_loading

process_weights_after_loading(layer)
Source code in vllm/model_executor/layers/quantization/mxfp4.py
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
def process_weights_after_loading(self, layer):
    if self.mxfp4_backend == Mxfp4Backend.MARLIN:
        prepare_moe_fp4_layer_for_marlin(layer)
    elif (
        self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
        or self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16
    ):
        from flashinfer.fp4_quantization import nvfp4_block_scale_interleave
        from flashinfer.fused_moe.core import _maybe_get_cached_w2_permute_indices

        layer.gemm1_alpha = Parameter(
            torch.tensor([1.702] * self.num_experts, dtype=torch.float32).cuda(),
            requires_grad=False,
        )
        layer.gemm1_beta = Parameter(
            torch.tensor([1.0] * self.num_experts, dtype=torch.float32).cuda(),
            requires_grad=False,
        )
        layer.gemm1_clamp_limit = Parameter(
            torch.tensor([7.0] * self.num_experts, dtype=torch.float32).cuda(),
            requires_grad=False,
        )
        sf_block_size = 32  # mxfp4 block size

        assert (
            layer.w13_weight.dim() == 3
            and layer.w13_weight.shape[0] == self.num_experts
            and layer.w13_weight.shape[1] == self.intermediate_size * 2
            and layer.w13_weight.shape[2] == self.hidden_size // 2
        )
        assert (
            layer.w13_weight_scale.dim() == 3
            and layer.w13_weight_scale.shape[0] == self.num_experts
            and layer.w13_weight_scale.shape[1] == self.intermediate_size * 2
            and layer.w13_weight_scale.shape[2] == self.hidden_size // sf_block_size
        )
        assert (
            layer.w2_weight.dim() == 3
            and layer.w2_weight.shape[0] == self.num_experts
            and layer.w2_weight.shape[1] == self.hidden_size
            and layer.w2_weight.shape[2] == self.intermediate_size // 2
        )
        assert (
            layer.w2_weight_scale.dim() == 3
            and layer.w2_weight_scale.shape[1] == self.hidden_size
            and layer.w2_weight_scale.shape[2]
            == self.intermediate_size // sf_block_size
        )
        assert (
            layer.w13_bias.dim() == 2
            and layer.w13_bias.shape[0] == self.num_experts
            and layer.w13_bias.shape[1] == self.intermediate_size * 2
        )
        assert (
            layer.w2_bias.dim() == 2
            and layer.w2_bias.shape[0] == self.num_experts
            and layer.w2_bias.shape[1] == self.hidden_size
        )

        w13_weight_scale = layer.w13_weight_scale.data
        w2_weight_scale = layer.w2_weight_scale.data
        w13_weight = layer.w13_weight.data
        w2_weight = layer.w2_weight.data
        w13_bias = layer.w13_bias.data.to(torch.float32)
        w2_bias = layer.w2_bias.data.to(torch.float32)

        # Swap w1 and w3 as the definition of
        # swiglu is different in the trtllm-gen
        def swap_every_two_rows(x, axis=-1):
            shape = x.shape
            if axis < 0:
                axis = len(shape) + axis

            # Create a new shape with pairs swapped along specified axis
            new_shape = list(shape)
            new_shape[axis] = shape[axis] // 2
            new_shape.insert(axis + 1, 2)

            # Reshape to expose pairs, swap them, and reshape back
            x = x.reshape(*new_shape)
            x = x.flip(axis + 1)
            new_shape = list(shape)
            return x.reshape(*new_shape)

        w13_weight_scale = swap_every_two_rows(w13_weight_scale, -2)
        w13_weight = swap_every_two_rows(w13_weight, -2)
        w13_bias = swap_every_two_rows(w13_bias, -1)

        # Do not interleave as the checkpoint is already interleaved

        # Shuffle weights and scaling factors for transposed mma output
        gemm1_weights_mxfp4_shuffled = []
        gemm1_scales_mxfp4_shuffled = []
        gemm2_weights_mxfp4_shuffled = []
        gemm2_scales_mxfp4_shuffled = []
        gemm1_bias_shuffled = []
        gemm2_bias_shuffled = []
        epilogue_tile_m = 128  # FIXME: this depends on the kernel internals
        for i in range(self.num_experts):
            # w13 weight shuffling
            permute_indices = _maybe_get_cached_w2_permute_indices(
                self._cache_permute_indices,
                w13_weight[i].view(torch.uint8),
                epilogue_tile_m,
            )
            gemm1_weights_mxfp4_shuffled.append(
                w13_weight[i]
                .view(torch.uint8)[permute_indices.to(w13_weight.device)]
                .contiguous()
            )
            # w13 scale shuffling
            permute_sf_indices = _maybe_get_cached_w2_permute_indices(
                self._cache_permute_indices,
                w13_weight_scale[i].view(torch.uint8),
                epilogue_tile_m,
                num_elts_per_sf=16,
            )
            gemm1_scales_mxfp4_shuffled.append(
                nvfp4_block_scale_interleave(
                    w13_weight_scale[i]
                    .view(torch.uint8)[
                        permute_sf_indices.to(w13_weight_scale.device)
                    ]
                    .contiguous()
                )
            )
            # w13 bias shuffling
            permute_bias_indices = _maybe_get_cached_w2_permute_indices(
                self._cache_permute_indices,
                w13_bias[i].clone().reshape(-1, 1),
                epilogue_tile_m,
            )
            gemm1_bias_shuffled.append(
                w13_bias[i]
                .clone()
                .reshape(-1, 1)[permute_bias_indices.to(w13_bias.device)]
                .contiguous()
            )
            # w2 weight shuffling
            permute_indices = _maybe_get_cached_w2_permute_indices(
                self._cache_permute_indices,
                w2_weight[i].view(torch.uint8),
                epilogue_tile_m,
            )
            gemm2_weights_mxfp4_shuffled.append(
                w2_weight[i]
                .view(torch.uint8)[permute_indices.to(w2_weight.device)]
                .contiguous()
            )
            # w2 scale shuffling
            permute_sf_indices = _maybe_get_cached_w2_permute_indices(
                self._cache_permute_indices,
                w2_weight_scale[i].view(torch.uint8),
                epilogue_tile_m,
                num_elts_per_sf=16,
            )
            gemm2_scales_mxfp4_shuffled.append(
                nvfp4_block_scale_interleave(
                    w2_weight_scale[i]
                    .view(torch.uint8)[
                        permute_sf_indices.to(w2_weight_scale.device)
                    ]
                    .contiguous()
                )
            )
            # w2 bias shuffling
            permute_indices = _maybe_get_cached_w2_permute_indices(
                self._cache_permute_indices,
                w2_bias[i].clone().reshape(-1, 1),
                epilogue_tile_m,
            )
            gemm2_bias_shuffled.append(
                w2_bias[i]
                .clone()
                .reshape(-1, 1)[permute_indices.to(w2_bias.device)]
                .contiguous()
            )

        w13_weight = torch.stack(gemm1_weights_mxfp4_shuffled)
        w13_weight_scale = (
            torch.stack(gemm1_scales_mxfp4_shuffled)
            .reshape(
                self.num_experts,
                2 * self.intermediate_size,
                self.hidden_size // sf_block_size,
            )
            .view(torch.float8_e4m3fn)
        )

        w2_weight = torch.stack(gemm2_weights_mxfp4_shuffled)
        w2_weight_scale = (
            torch.stack(gemm2_scales_mxfp4_shuffled)
            .reshape(
                self.num_experts,
                self.hidden_size,
                self.intermediate_size // sf_block_size,
            )
            .view(torch.float8_e4m3fn)
        )

        layer.w13_weight = Parameter(w13_weight, requires_grad=False)
        layer.w13_weight_scale = Parameter(w13_weight_scale, requires_grad=False)
        layer.w2_weight = Parameter(w2_weight, requires_grad=False)
        layer.w2_weight_scale = Parameter(w2_weight_scale, requires_grad=False)
        layer.w13_bias = Parameter(
            torch.stack(gemm1_bias_shuffled).reshape(self.num_experts, -1),
            requires_grad=False,
        )
        layer.w2_bias = Parameter(
            torch.stack(gemm2_bias_shuffled).reshape(self.num_experts, -1),
            requires_grad=False,
        )
    elif (
        self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS
        or self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16
    ):
        layer.gemm1_alpha = Parameter(
            torch.tensor([1.702] * self.num_experts, dtype=torch.float32).cuda(),
            requires_grad=False,
        )
        layer.gemm1_beta = Parameter(
            torch.tensor([1.0] * self.num_experts, dtype=torch.float32).cuda(),
            requires_grad=False,
        )
        layer.gemm1_clamp_limit = Parameter(
            torch.tensor([7.0] * self.num_experts, dtype=torch.float32).cuda(),
            requires_grad=False,
        )

        sf_block_size = 32  # mxfp4 block size

        # Common shape assertions
        assert (
            layer.w13_weight.dim() == 3
            and layer.w13_weight.shape[0] == self.num_experts
            and layer.w13_weight.shape[1] == self.intermediate_size * 2
            and layer.w13_weight.shape[2] == self.hidden_size // 2
        )
        assert (
            layer.w13_weight_scale.dim() == 3
            and layer.w13_weight_scale.shape[0] == self.num_experts
            and layer.w13_weight_scale.shape[1] == self.intermediate_size * 2
            and layer.w13_weight_scale.shape[2] == self.hidden_size // sf_block_size
        )
        assert (
            layer.w2_weight.dim() == 3
            and layer.w2_weight.shape[0] == self.num_experts
            and layer.w2_weight.shape[1] == self.hidden_size
            and layer.w2_weight.shape[2] == self.intermediate_size // 2
        )
        assert (
            layer.w2_weight_scale.dim() == 3
            and layer.w2_weight_scale.shape[1] == self.hidden_size
            and layer.w2_weight_scale.shape[2]
            == self.intermediate_size // sf_block_size
        )
        assert (
            layer.w13_bias.dim() == 2
            and layer.w13_bias.shape[0] == self.num_experts
            and layer.w13_bias.shape[1] == self.intermediate_size * 2
        )
        assert (
            layer.w2_bias.dim() == 2
            and layer.w2_bias.shape[0] == self.num_experts
            and layer.w2_bias.shape[1] == self.hidden_size
        )

        # De-interleave and swap for w13 weight, bias, and scales
        w13_w = layer.w13_weight.data
        gate_w, up_w = w13_w[:, ::2, :], w13_w[:, 1::2, :]
        deinterleaved_w13_w = torch.cat([gate_w, up_w], dim=1)
        w1_w, w3_w = torch.chunk(deinterleaved_w13_w, 2, dim=1)
        w13_weight_swapped = torch.cat([w3_w, w1_w], dim=1)

        w13_b = layer.w13_bias.data.to(torch.float32)
        gate_b, up_b = w13_b[:, ::2], w13_b[:, 1::2]
        deinterleaved_w13_b = torch.cat([gate_b, up_b], dim=1)
        b1, b3 = torch.chunk(deinterleaved_w13_b, 2, dim=-1)
        w13_bias_swapped = torch.cat([b3, b1], dim=-1).to(torch.bfloat16)

        w13_s = layer.w13_weight_scale.data
        gate_s, up_s = w13_s[:, ::2, :], w13_s[:, 1::2, :]
        deinterleaved_w13_s = torch.cat([gate_s, up_s], dim=1)
        s1, s3 = torch.chunk(deinterleaved_w13_s, 2, dim=1)
        w13_scale_swapped = torch.cat([s3, s1], dim=1)

        if self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS:
            from flashinfer import block_scale_interleave

            orig_shape = w13_scale_swapped.shape
            w13_scale_interleaved = block_scale_interleave(
                w13_scale_swapped.view(torch.uint8)
            ).reshape(orig_shape)

            w2_s = layer.w2_weight_scale.data
            orig_shape = w2_s.shape
            w2_scale_interleaved = block_scale_interleave(
                w2_s.view(torch.uint8)
            ).reshape(orig_shape)

            layer.w13_weight = Parameter(w13_weight_swapped, requires_grad=False)
            layer.w13_weight_scale = Parameter(
                w13_scale_interleaved, requires_grad=False
            )
            layer.w13_bias = Parameter(w13_bias_swapped, requires_grad=False)
            layer.w2_weight_scale = Parameter(
                w2_scale_interleaved, requires_grad=False
            )
        elif self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16:

            def _interleave_mxfp4_cutlass_sm90(w):
                w_shape = w.shape
                w_interleaved = w.reshape(
                    w_shape[0], w_shape[1], (w_shape[2] // 4), 4
                )
                w_interleaved = w_interleaved.permute(0, 2, 1, 3)
                w_interleaved = w_interleaved.reshape(
                    w_shape[0], w_shape[2] // 4, w_shape[1] * 4
                )
                return w_interleaved

            w31_scales = w13_scale_swapped.to(torch.uint8).view(torch.uint8)
            w31_scales_interleaved = _interleave_mxfp4_cutlass_sm90(w31_scales)

            w2_weight_scale = layer.w2_weight_scale.data
            w2_scales = w2_weight_scale.to(torch.uint8).view(torch.uint8)
            w2_scales_interleaved = _interleave_mxfp4_cutlass_sm90(w2_scales)

            layer.w13_weight = torch.nn.Parameter(
                torch.cat([w3_w, w1_w], dim=1), requires_grad=False
            )
            layer.w13_bias = torch.nn.Parameter(
                w13_bias_swapped, requires_grad=False
            )
            layer.w13_weight_scale = torch.nn.Parameter(
                w31_scales_interleaved, requires_grad=False
            )
            layer.w2_weight_scale = torch.nn.Parameter(
                w2_scales_interleaved, requires_grad=False
            )
    elif self.mxfp4_backend == Mxfp4Backend.TRITON:
        from triton_kernels.matmul_ogs import FlexCtx, PrecisionConfig

        w13_bias = layer.w13_bias.to(torch.float32)
        w2_bias = layer.w2_bias.to(torch.float32)

        layer.w13_bias = Parameter(w13_bias, requires_grad=False)
        layer.w2_bias = Parameter(w2_bias, requires_grad=False)

        # Ideally we'd use FusedMoEModularKernel.prepare_finalize object
        # (stored in self.fused_experts) to determine if the MoE has a
        # batched activation format. As self.fused_experts is not
        # initialized at this point, we resort to checking the MoE config
        # directly.
        is_batched_moe = self.moe.use_pplx_kernels or self.moe.use_deepep_ll_kernels
        if is_batched_moe:
            num_warps = 4 if envs.VLLM_MOE_DP_CHUNK_SIZE <= 512 else 8
        else:
            num_warps = 8

        w13_weight, w13_flex, w13_scale = _swizzle_mxfp4(
            layer.w13_weight, layer.w13_weight_scale, num_warps
        )
        w2_weight, w2_flex, w2_scale = _swizzle_mxfp4(
            layer.w2_weight, layer.w2_weight_scale, num_warps
        )

        self.w13_precision_config = PrecisionConfig(
            weight_scale=w13_scale, flex_ctx=FlexCtx(rhs_data=w13_flex)
        )
        self.w2_precision_config = PrecisionConfig(
            weight_scale=w2_scale, flex_ctx=FlexCtx(rhs_data=w2_flex)
        )

        self.w13_weight_triton_tensor = w13_weight
        self.w2_weight_triton_tensor = w2_weight

        # need to delete the original weights to save memory on single GPU
        del layer.w13_weight
        del layer.w2_weight
        layer.w13_weight = None
        layer.w2_weight = None
        torch.cuda.empty_cache()
    else:
        raise ValueError(f"Unsupported backend: {self.mxfp4_backend}")

select_gemm_impl

select_gemm_impl(
    prepare_finalize: FusedMoEPrepareAndFinalize,
    layer: Module,
) -> FusedMoEPermuteExpertsUnpermute
Source code in vllm/model_executor/layers/quantization/mxfp4.py
def select_gemm_impl(
    self,
    prepare_finalize: mk.FusedMoEPrepareAndFinalize,
    layer: torch.nn.Module,
) -> mk.FusedMoEPermuteExpertsUnpermute:
    if (
        prepare_finalize.activation_format
        == mk.FusedMoEActivationFormat.BatchedExperts
    ):
        raise NotImplementedError(
            "Mxfp4 does not support batched experts format for EP"
        )
    else:
        assert self.moe_quant_config is not None
        if (
            self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
            or self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16
        ):
            # B200 code-path
            kwargs = {
                "gemm1_alpha": layer.gemm1_alpha,
                "gemm1_beta": layer.gemm1_beta,
                "gemm1_clamp_limit": layer.gemm1_clamp_limit,
                # TODO(bnell): part of quant_config
                "max_capture_size": self.max_capture_size,
            }
            return TrtLlmGenExperts(self.moe, self.moe_quant_config, **kwargs)
        elif self.mxfp4_backend == Mxfp4Backend.MARLIN:
            return MarlinExperts(self.moe_quant_config)
        else:
            return OAITritonExperts(self.moe_quant_config)

get_mxfp4_backend

get_mxfp4_backend()
Source code in vllm/model_executor/layers/quantization/mxfp4.py
def get_mxfp4_backend():
    # Backend Selection
    if current_platform.is_cuda():
        if (
            current_platform.is_device_capability(90)
            and has_flashinfer()
            and envs.VLLM_USE_FLASHINFER_MOE_MXFP4_BF16
        ):
            logger.info_once("Using FlashInfer MXFP4 BF16 backend for SM90")
            return Mxfp4Backend.SM90_FI_MXFP4_BF16
        elif (
            current_platform.is_device_capability(100)
            and has_flashinfer()
            and envs.VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8_CUTLASS
        ):
            logger.info_once("Using FlashInfer MXFP4 MXFP8 CUTLASS backend for SM100")
            return Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS
        elif (
            current_platform.is_device_capability(100)
            and has_flashinfer()
            and envs.VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8
        ):
            logger.info_once(
                "Using FlashInfer MXFP4 MXFP8 TRTLLM backend for SM100, "
                "for high concurrency throughput workloads consider setting "
                "VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8_CUTLASS=1 for better "
                "performance"
            )
            return Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
        elif current_platform.is_device_capability(100) and has_flashinfer():
            logger.info_once(
                "Using FlashInfer MXFP4 BF16 backend for SM100, "
                "For faster performance on SM100, consider setting "
                "VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8=1, though this may impact "
                "accuracy."
            )
            return Mxfp4Backend.SM100_FI_MXFP4_BF16
        elif (
            current_platform.is_device_capability(100)
            or current_platform.is_device_capability(90)
        ) and not has_flashinfer():
            logger.warning_once(
                "MXFP4 MoE is enabled on Hopper/Blackwell but FlashInfer "
                "is not available. This may result in degraded performance. "
                "Please `pip install vllm[flashinfer]` for best results."
            )

        # If FlashInfer is not available, try either Marlin or Triton
        if (
            envs.VLLM_MXFP4_USE_MARLIN
            or current_platform.get_device_capability()[0] < 9
            or not has_triton_kernels()
            or not is_torch_equal_or_newer("2.8.0")
        ):
            logger.info_once("Using Marlin backend")
            return Mxfp4Backend.MARLIN
        else:
            logger.info_once("Using Triton backend")
            return Mxfp4Backend.TRITON
    elif current_platform.is_rocm() and has_triton_kernels():
        logger.info_once("Using Triton backend")
        return Mxfp4Backend.TRITON

    return Mxfp4Backend.NONE