Skip to content

vllm.model_executor.layers.quantization.quark.schemes.quark_w8a8_int8

logger module-attribute

logger = init_logger(__name__)

QuarkW8A8Int8

Bases: QuarkScheme

Source code in vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py
class QuarkW8A8Int8(QuarkScheme):
    _kernel_backends_being_used: set[str] = set()

    def __init__(
        self,
        qscheme: str,
        is_static_input_scheme: Optional[bool],
        input_symmetric: Optional[bool],
    ):
        self.qscheme = qscheme
        self.is_static_input_scheme = is_static_input_scheme
        self.input_symmetric = input_symmetric

    @classmethod
    def get_min_capability(cls) -> int:
        # turing and up
        return 75

    def create_weights(
        self,
        layer: torch.nn.Module,
        output_partition_sizes: list[int],
        input_size_per_partition: int,
        params_dtype: torch.dtype,
        weight_loader: Callable,
        **kwargs,
    ):
        layer.logical_widths = output_partition_sizes

        scaled_mm_linear_kernel_config = ScaledMMLinearLayerConfig(
            is_channelwise=(self.qscheme == "per_channel"),
            is_static_input_scheme=(self.is_static_input_scheme is True),
            input_symmetric=(self.input_symmetric is True),
        )

        kernel_type = choose_scaled_mm_linear_kernel(scaled_mm_linear_kernel_config)

        if kernel_type.__name__ not in self._kernel_backends_being_used:
            logger.info("Using %s for QuarkW8A8Int8", kernel_type.__name__)
            self._kernel_backends_being_used.add(kernel_type.__name__)

        # WEIGHT
        weight = ModelWeightParameter(
            data=torch.empty(
                sum(output_partition_sizes), input_size_per_partition, dtype=torch.int8
            ),
            input_dim=1,
            output_dim=0,
            weight_loader=weight_loader,
        )

        layer.register_parameter("weight", weight)

        # WEIGHT SCALE
        if self.qscheme == "per_channel":
            weight_scale = ChannelQuantScaleParameter(
                data=torch.empty((sum(output_partition_sizes)), dtype=torch.float32),
                output_dim=0,
                weight_loader=weight_loader,
            )
            ChannelQuantZPParameter = ChannelQuantScaleParameter
            weight_zero_point = ChannelQuantZPParameter(
                data=torch.empty((sum(output_partition_sizes)), dtype=torch.int8),
                output_dim=0,
                weight_loader=weight_loader,
            )
        else:
            assert self.qscheme == "per_tensor"
            weight_scale = PerTensorScaleParameter(
                data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
                weight_loader=weight_loader,
            )
            PerTensorZPParameter = PerTensorScaleParameter
            weight_zero_point = PerTensorZPParameter(
                data=torch.empty(len(output_partition_sizes), dtype=torch.int8),
                weight_loader=weight_loader,
            )
        layer.register_parameter("weight_scale", weight_scale)
        layer.register_parameter("weight_zero_point", weight_zero_point)

        # INPUT SCALE
        if self.is_static_input_scheme:
            input_scale = BasevLLMParameter(
                data=torch.empty(1, dtype=torch.float32), weight_loader=weight_loader
            )
            layer.register_parameter("input_scale", input_scale)

            input_zero_point = BasevLLMParameter(
                data=torch.empty(1, dtype=torch.int8), weight_loader=weight_loader
            )
            layer.register_parameter("input_zero_point", input_zero_point)

        self.kernel = kernel_type(
            c=scaled_mm_linear_kernel_config,
            w_q_param_name="weight",
            w_s_param_name="weight_scale",
            i_s_param_name="input_scale",
            i_zp_param_name="input_zero_point",
            azp_adj_param_name="azp_adj",
        )

    # Checkpoints are serialized in quark format, which is
    # different from the format the kernel may want. Handle repacking here.
    def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
        layer.register_parameter("weight_zero_point", None)
        delattr(layer, "weight_zero_point")
        if self.input_symmetric:
            layer.register_parameter("input_zero_point", None)
            delattr(layer, "input_zero_point")

        self.kernel.process_weights_after_loading(layer)

    def apply_weights(
        self, layer: torch.nn.Module, x: torch.Tensor, bias: Optional[torch.Tensor]
    ) -> torch.Tensor:
        return self.kernel.apply_weights(layer, x, bias)

_kernel_backends_being_used class-attribute instance-attribute

_kernel_backends_being_used: set[str] = set()

input_symmetric instance-attribute

input_symmetric = input_symmetric

is_static_input_scheme instance-attribute

is_static_input_scheme = is_static_input_scheme

qscheme instance-attribute

qscheme = qscheme

__init__

__init__(
    qscheme: str,
    is_static_input_scheme: Optional[bool],
    input_symmetric: Optional[bool],
)
Source code in vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py
def __init__(
    self,
    qscheme: str,
    is_static_input_scheme: Optional[bool],
    input_symmetric: Optional[bool],
):
    self.qscheme = qscheme
    self.is_static_input_scheme = is_static_input_scheme
    self.input_symmetric = input_symmetric

apply_weights

apply_weights(
    layer: Module, x: Tensor, bias: Optional[Tensor]
) -> Tensor
Source code in vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py
def apply_weights(
    self, layer: torch.nn.Module, x: torch.Tensor, bias: Optional[torch.Tensor]
) -> torch.Tensor:
    return self.kernel.apply_weights(layer, x, bias)

create_weights

create_weights(
    layer: Module,
    output_partition_sizes: list[int],
    input_size_per_partition: int,
    params_dtype: dtype,
    weight_loader: Callable,
    **kwargs,
)
Source code in vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py
def create_weights(
    self,
    layer: torch.nn.Module,
    output_partition_sizes: list[int],
    input_size_per_partition: int,
    params_dtype: torch.dtype,
    weight_loader: Callable,
    **kwargs,
):
    layer.logical_widths = output_partition_sizes

    scaled_mm_linear_kernel_config = ScaledMMLinearLayerConfig(
        is_channelwise=(self.qscheme == "per_channel"),
        is_static_input_scheme=(self.is_static_input_scheme is True),
        input_symmetric=(self.input_symmetric is True),
    )

    kernel_type = choose_scaled_mm_linear_kernel(scaled_mm_linear_kernel_config)

    if kernel_type.__name__ not in self._kernel_backends_being_used:
        logger.info("Using %s for QuarkW8A8Int8", kernel_type.__name__)
        self._kernel_backends_being_used.add(kernel_type.__name__)

    # WEIGHT
    weight = ModelWeightParameter(
        data=torch.empty(
            sum(output_partition_sizes), input_size_per_partition, dtype=torch.int8
        ),
        input_dim=1,
        output_dim=0,
        weight_loader=weight_loader,
    )

    layer.register_parameter("weight", weight)

    # WEIGHT SCALE
    if self.qscheme == "per_channel":
        weight_scale = ChannelQuantScaleParameter(
            data=torch.empty((sum(output_partition_sizes)), dtype=torch.float32),
            output_dim=0,
            weight_loader=weight_loader,
        )
        ChannelQuantZPParameter = ChannelQuantScaleParameter
        weight_zero_point = ChannelQuantZPParameter(
            data=torch.empty((sum(output_partition_sizes)), dtype=torch.int8),
            output_dim=0,
            weight_loader=weight_loader,
        )
    else:
        assert self.qscheme == "per_tensor"
        weight_scale = PerTensorScaleParameter(
            data=torch.empty(len(output_partition_sizes), dtype=torch.float32),
            weight_loader=weight_loader,
        )
        PerTensorZPParameter = PerTensorScaleParameter
        weight_zero_point = PerTensorZPParameter(
            data=torch.empty(len(output_partition_sizes), dtype=torch.int8),
            weight_loader=weight_loader,
        )
    layer.register_parameter("weight_scale", weight_scale)
    layer.register_parameter("weight_zero_point", weight_zero_point)

    # INPUT SCALE
    if self.is_static_input_scheme:
        input_scale = BasevLLMParameter(
            data=torch.empty(1, dtype=torch.float32), weight_loader=weight_loader
        )
        layer.register_parameter("input_scale", input_scale)

        input_zero_point = BasevLLMParameter(
            data=torch.empty(1, dtype=torch.int8), weight_loader=weight_loader
        )
        layer.register_parameter("input_zero_point", input_zero_point)

    self.kernel = kernel_type(
        c=scaled_mm_linear_kernel_config,
        w_q_param_name="weight",
        w_s_param_name="weight_scale",
        i_s_param_name="input_scale",
        i_zp_param_name="input_zero_point",
        azp_adj_param_name="azp_adj",
    )

get_min_capability classmethod

get_min_capability() -> int
Source code in vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py
@classmethod
def get_min_capability(cls) -> int:
    # turing and up
    return 75

process_weights_after_loading

process_weights_after_loading(layer: Module) -> None
Source code in vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
    layer.register_parameter("weight_zero_point", None)
    delattr(layer, "weight_zero_point")
    if self.input_symmetric:
        layer.register_parameter("input_zero_point", None)
        delattr(layer, "input_zero_point")

    self.kernel.process_weights_after_loading(layer)