Skip to content

vllm.model_executor.layers.quantization.utils.mxfp4_utils

dequant_mxfp4 module-attribute

dequant_mxfp4 = dequant_mxfp4

logger module-attribute

logger = init_logger(__name__)

quant_dequant_mxfp4 module-attribute

quant_dequant_mxfp4 = quant_dequant_mxfp4

_can_support_mxfp4

_can_support_mxfp4(
    use_grouped_topk: bool = False,
    topk_group: Optional[int] = None,
    num_expert_group: Optional[int] = None,
    expert_map: Optional[Tensor] = None,
    custom_routing_function: Optional[Callable] = None,
    e_score_correction_bias: Optional[Tensor] = None,
    apply_router_weight_on_input: bool = False,
    scoring_func: str = "softmax",
    activation: str = "swigluoai",
    expert_load_view: Optional[Tensor] = None,
    logical_to_physical_map: Optional[Tensor] = None,
    logical_replica_count: Optional[Tensor] = None,
)
Source code in vllm/model_executor/layers/quantization/utils/mxfp4_utils.py
def _can_support_mxfp4(
    use_grouped_topk: bool = False,
    topk_group: Optional[int] = None,
    num_expert_group: Optional[int] = None,
    expert_map: Optional[torch.Tensor] = None,
    custom_routing_function: Optional[Callable] = None,
    e_score_correction_bias: Optional[torch.Tensor] = None,
    apply_router_weight_on_input: bool = False,
    scoring_func: str = "softmax",
    activation: str = "swigluoai",
    expert_load_view: Optional[torch.Tensor] = None,
    logical_to_physical_map: Optional[torch.Tensor] = None,
    logical_replica_count: Optional[torch.Tensor] = None,
):
    return not (
        use_grouped_topk
        or topk_group
        or num_expert_group
        or custom_routing_function
        or e_score_correction_bias
        or apply_router_weight_on_input
        or scoring_func != "softmax"
        or activation != "swigluoai"
        or expert_load_view
        or logical_to_physical_map
        or logical_replica_count
    )

_dequant_mxfp4

_dequant_mxfp4(
    x: Tensor, scale: Tensor, float_dtype: dtype
) -> Tensor
Source code in vllm/model_executor/layers/quantization/utils/mxfp4_utils.py
def _dequant_mxfp4(
    x: torch.Tensor, scale: torch.Tensor, float_dtype: torch.dtype
) -> torch.Tensor:
    try:
        from quark.torch.kernel import mx
    except ImportError as err:
        raise ImportError(
            "The package `amd-quark` is required to use "
            "MX-FP4 models. Please install it with `pip install "
            "amd-quark`."
        ) from err

    return mx.dq_mxfp4(x, scale, float_dtype)

_dequant_mxfp4_fake

_dequant_mxfp4_fake(
    x: Tensor, scale: Tensor, float_dtype: dtype
) -> Tensor
Source code in vllm/model_executor/layers/quantization/utils/mxfp4_utils.py
def _dequant_mxfp4_fake(
    x: torch.Tensor, scale: torch.Tensor, float_dtype: torch.dtype
) -> torch.Tensor:
    return torch.empty(
        (*x.shape[:-1], x.shape[-1] * 2), dtype=float_dtype, device=x.device
    )

_quant_dequant_mxfp4

_quant_dequant_mxfp4(
    x: Tensor, scale_calculation_mode: str = "even"
) -> Tensor
Source code in vllm/model_executor/layers/quantization/utils/mxfp4_utils.py
def _quant_dequant_mxfp4(
    x: torch.Tensor, scale_calculation_mode: str = "even"
) -> torch.Tensor:
    try:
        from quark.torch.kernel import mx
    except ImportError as err:
        raise ImportError(
            "The package `amd-quark` is required to use "
            "MX-FP4 models. Please install it with `pip install "
            "amd-quark`."
        ) from err

    return mx.qdq_mxfp4(x, scale_calculation_mode)

_quant_dequant_mxfp4_fake

_quant_dequant_mxfp4_fake(
    x: Tensor, scale_calculation_mode: str = "even"
) -> Tensor
Source code in vllm/model_executor/layers/quantization/utils/mxfp4_utils.py
def _quant_dequant_mxfp4_fake(
    x: torch.Tensor, scale_calculation_mode: str = "even"
) -> torch.Tensor:
    return torch.empty_like(x)

_swizzle_mxfp4

_swizzle_mxfp4(quant_tensor, scale, num_warps)

weight swizzle for mxfp4 moe, used for OAI mxfp4 kernel

Source code in vllm/model_executor/layers/quantization/utils/mxfp4_utils.py
def _swizzle_mxfp4(quant_tensor, scale, num_warps):
    """weight swizzle for mxfp4 moe, used for OAI mxfp4 kernel"""
    import triton_kernels.matmul_ogs_details.opt_flags as opt_flags
    from triton_kernels.numerics import InFlexData
    from triton_kernels.tensor import FP4, convert_layout, wrap_torch_tensor
    from triton_kernels.tensor_details import layout
    from triton_kernels.tensor_details.layout import StridedLayout

    value_layout_opts: dict[str, Any] = {}
    scale_layout_opts: dict[str, Any] = {}

    if (
        current_platform.is_cuda()
        and current_platform.is_device_capability(90)
        and not is_torch_equal_or_newer("2.8.1")
    ):
        logger.warning_once(
            "Mxfp4 on hopper is running on torch < 2.8.1, "
            "this cause swizling to be disabled, which may "
            "cause performance degradation. Please upgrade to torch nightly"
        )
        value_layout = StridedLayout
        scale_layout = StridedLayout
    elif current_platform.is_rocm():
        from triton_kernels.tensor_details.layout import (
            GFX950MXScaleLayout,
            StridedLayout,
        )

        from vllm.platforms.rocm import on_gfx950

        value_layout = StridedLayout
        scale_layout = GFX950MXScaleLayout if on_gfx950() else StridedLayout
    else:
        value_layout, value_layout_opts = layout.make_default_matmul_mxfp4_w_layout(
            mx_axis=1
        )
        scale_layout, scale_layout_opts = (
            layout.make_default_matmul_mxfp4_w_scale_layout(
                mx_axis=1, num_warps=num_warps
            )
        )
    if current_platform.is_cuda() and current_platform.is_device_capability(100):
        constraints = {
            "is_persistent": True,
            "epilogue_subtile": 1,
        }
        opt_flags.update_opt_flags_constraints(constraints)
    # transpose the tensor so that the quantization axis is on dim1
    quant_tensor = quant_tensor.transpose(-2, -1)
    scale = scale.transpose(-2, -1)
    quant_tensor = convert_layout(
        wrap_torch_tensor(quant_tensor, dtype=FP4), value_layout, **value_layout_opts
    )
    scale = convert_layout(wrap_torch_tensor(scale), scale_layout, **scale_layout_opts)
    return quant_tensor, InFlexData(), scale