vllm.model_executor.model_loader.gguf_loader ¶
GGUFModelLoader ¶
Bases: BaseModelLoader
Model loader that can load GGUF files. This is useful for loading models that are quantized with GGUF and saved in the GGUF format. This loader supports loading both full models and sharded models.
Source code in vllm/model_executor/model_loader/gguf_loader.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
|
__init__ ¶
__init__(load_config: LoadConfig)
Source code in vllm/model_executor/model_loader/gguf_loader.py
_get_gguf_weights_map ¶
_get_gguf_weights_map(model_config: ModelConfig)
GGUF uses this naming convention for their tensors from HF checkpoint: blk.N.BB.weight
and blk.N.BB.bias
where N signifies the block number of a layer, and BB signifies the attention/mlp layer components. See "Standardized tensor names" in https://github.com/ggerganov/ggml/blob/master/docs/gguf.md for details.
Source code in vllm/model_executor/model_loader/gguf_loader.py
_get_weights_iterator ¶
_get_weights_iterator(
model_name_or_path: str,
gguf_to_hf_name_map: dict[str, str],
) -> Generator[tuple[str, Tensor], None, None]
Source code in vllm/model_executor/model_loader/gguf_loader.py
_prepare_weights ¶
_prepare_weights(model_name_or_path: str)
Source code in vllm/model_executor/model_loader/gguf_loader.py
download_model ¶
download_model(model_config: ModelConfig) -> None
load_model ¶
load_model(
vllm_config: VllmConfig, model_config: ModelConfig
) -> Module
Source code in vllm/model_executor/model_loader/gguf_loader.py
load_weights ¶
load_weights(
model: Module, model_config: ModelConfig
) -> None