vllm.model_executor.models.jais ¶
Inference-only Jais model compatible with HuggingFace weights.
JAISAttention ¶
Bases: Module
Source code in vllm/model_executor/models/jais.py
attn instance-attribute
¶
attn = Attention(
num_heads,
head_dim,
scale=scale,
alibi_slopes=alibi_slopes,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
c_attn instance-attribute
¶
c_attn = QKVParallelLinear(
hidden_size,
head_dim,
total_num_heads,
bias=True,
quant_config=quant_config,
)
c_proj instance-attribute
¶
c_proj = RowParallelLinear(
hidden_size,
hidden_size,
bias=True,
quant_config=quant_config,
)
__init__ ¶
__init__(
config: JAISConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/jais.py
forward ¶
Source code in vllm/model_executor/models/jais.py
JAISBlock ¶
Bases: Module
Source code in vllm/model_executor/models/jais.py
attn instance-attribute
¶
attn = JAISAttention(
config,
cache_config,
quant_config,
prefix=f"{prefix}.attn",
)
__init__ ¶
__init__(
config: JAISConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/jais.py
forward ¶
Source code in vllm/model_executor/models/jais.py
JAISLMHeadModel ¶
Bases: Module
, SupportsPP
Source code in vllm/model_executor/models/jais.py
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
|
logits_processor instance-attribute
¶
logits_processor = LogitsProcessor(
vocab_size=vocab_size, scale=output_logits_scale
)
make_empty_intermediate_tensors instance-attribute
¶
transformer instance-attribute
¶
transformer = JAISModel(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "transformer"),
)
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/jais.py
compute_logits ¶
forward ¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Union[IntermediateTensors, Tensor]
Source code in vllm/model_executor/models/jais.py
get_input_embeddings ¶
load_weights ¶
Source code in vllm/model_executor/models/jais.py
JAISMLP ¶
Bases: Module
Source code in vllm/model_executor/models/jais.py
c_fc instance-attribute
¶
c_fc = ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=True,
quant_config=quant_config,
)
c_fc2 instance-attribute
¶
c_fc2 = (
ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=True,
quant_config=quant_config,
)
if swiglu
else None
)
c_proj instance-attribute
¶
c_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=True,
quant_config=quant_config,
)
__init__ ¶
__init__(
intermediate_size: int,
config: JAISConfig,
quant_config: Optional[QuantizationConfig] = None,
)
Source code in vllm/model_executor/models/jais.py
forward ¶
Source code in vllm/model_executor/models/jais.py
JAISModel ¶
Bases: Module
Source code in vllm/model_executor/models/jais.py
make_empty_intermediate_tensors instance-attribute
¶
make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states"], n_embd
)
)
wpe instance-attribute
¶
wpe = (
Embedding(max_position_embeddings, embed_dim)
if position_embedding_type != "alibi"
else None
)
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/jais.py
forward ¶
forward(
input_ids: Tensor,
position_ids: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Union[IntermediateTensors, Tensor]