Skip to content

vllm.reasoning.glm4_moe_reasoning_parser

logger module-attribute

logger = init_logger(__name__)

Glm4MoeModelReasoningParser

Bases: ReasoningParser

Reasoning parser for the Glm4MoeModel model.

The Glm4MoeModel model uses ... tokens to denote reasoning text within its output. The model provides a strict switch to disable reasoning output via the 'enable_thinking=False' parameter. This parser extracts the reasoning content enclosed by and tokens from the model's output.

Source code in vllm/reasoning/glm4_moe_reasoning_parser.py
@ReasoningParserManager.register_module("glm45")
class Glm4MoeModelReasoningParser(ReasoningParser):
    """
    Reasoning parser for the Glm4MoeModel model.

    The Glm4MoeModel model uses <think>...</think> tokens to denote reasoning
    text within its output. The model provides a strict switch to disable
    reasoning output via the 'enable_thinking=False' parameter. This parser
    extracts the reasoning content enclosed by <think> and </think> tokens
    from the model's output.
    """

    def __init__(self, tokenizer: PreTrainedTokenizerBase, *args, **kwargs):
        super().__init__(tokenizer, *args, **kwargs)
        self.think_start_token = "<think>"
        self.think_end_token = "</think>"
        self.assistant_token = "<|assistant|>"

        if not self.model_tokenizer:
            raise ValueError(
                "The model tokenizer must be passed to the ReasoningParser "
                "constructor during construction."
            )

        self.think_start_token_id = self.vocab.get(self.think_start_token)
        self.think_end_token_id = self.vocab.get(self.think_end_token)
        self.assistant_token_id = self.vocab.get(self.assistant_token)
        if (
            self.think_start_token_id is None
            or self.think_end_token_id is None
            or self.assistant_token_id is None
        ):
            raise RuntimeError(
                "Glm4MoeModel reasoning parser could not locate "
                "think start/end or assistant tokens in the tokenizer!"
            )

    def is_reasoning_end(self, input_ids: list[int]) -> bool:
        """
        GLM's chat template has <think></think> tokens after every
        <|assistant|> token. Thus, we need to check if </think> is
        after the most recent <|assistant|> token (if present).
        """
        for token_id in input_ids[::-1]:
            if token_id == self.think_end_token_id:
                return True
            elif token_id == self.assistant_token_id:
                return False
        return False

    def extract_content_ids(self, input_ids: list[int]) -> list[int]:
        """
        Extract the content after the end tokens
        """
        if self.think_end_token_id not in input_ids[:-1]:
            return []
        else:
            return input_ids[input_ids.index(self.think_end_token_id) + 1 :]

    def extract_reasoning_content_streaming(
        self,
        previous_text: str,
        current_text: str,
        delta_text: str,
        previous_token_ids: Sequence[int],
        current_token_ids: Sequence[int],
        delta_token_ids: Sequence[int],
    ) -> Union[DeltaMessage, None]:
        """
        Extract reasoning content from a delta message.
        Handles streaming output where previous + delta = current.
        Uses token IDs for faster processing.
        For text <think>abc</think>xyz:
        - 'abc' goes to reasoning_content
        - 'xyz' goes to content
        """
        # Skip single special tokens
        if len(delta_token_ids) == 1 and (
            delta_token_ids[0] in [self.think_start_token_id, self.think_end_token_id]
        ):
            return None

        if self.think_start_token_id in previous_token_ids:
            if self.think_end_token_id in delta_token_ids:
                # <think> in previous, </think> in delta,
                # extract reasoning content
                end_index = delta_text.find(self.think_end_token)
                reasoning_content = delta_text[:end_index]
                content = delta_text[end_index + len(self.think_end_token) :]
                return DeltaMessage(
                    reasoning_content=reasoning_content,
                    content=content if content else None,
                )
            elif self.think_end_token_id in previous_token_ids:
                # <think> in previous, </think> in previous,
                # reasoning content continues
                return DeltaMessage(content=delta_text)
            else:
                # <think> in previous, no </think> in previous or delta,
                # reasoning content continues
                return DeltaMessage(reasoning_content=delta_text)
        elif self.think_start_token_id in delta_token_ids:
            if self.think_end_token_id in delta_token_ids:
                # <think> in delta, </think> in delta, extract reasoning content
                start_index = delta_text.find(self.think_start_token)
                end_index = delta_text.find(self.think_end_token)
                reasoning_content = delta_text[
                    start_index + len(self.think_start_token) : end_index
                ]
                content = delta_text[end_index + len(self.think_end_token) :]
                return DeltaMessage(
                    reasoning_content=reasoning_content,
                    content=content if content else None,
                )
            else:
                # <think> in delta, no </think> in delta,
                # reasoning content continues
                return DeltaMessage(reasoning_content=delta_text)
        else:
            # thinking is disabled, just content
            return DeltaMessage(content=delta_text)

    def extract_reasoning_content(
        self, model_output: str, request: ChatCompletionRequest
    ) -> tuple[Optional[str], Optional[str]]:
        """
        Extract reasoning content from the model output.

        For text <think>abc</think>xyz:
        - 'abc' goes to reasoning_content
        - 'xyz' goes to content

        Returns:
            tuple[Optional[str], Optional[str]]: reasoning content and content
        """

        # Check if the model output contains the <think> and </think> tokens.
        if (
            self.think_start_token not in model_output
            or self.think_end_token not in model_output
        ):
            return None, model_output
        # Check if the <think> is present in the model output, remove it
        # if it is present.
        model_output_parts = model_output.partition(self.think_start_token)
        model_output = (
            model_output_parts[2] if model_output_parts[1] else model_output_parts[0]
        )
        # Check if the model output contains the </think> tokens.
        # If the end token is not found, return the model output as is.
        if self.think_end_token not in model_output:
            return None, model_output

        # Extract reasoning content from the model output.
        reasoning_content, _, content = model_output.partition(self.think_end_token)

        final_content = content or None
        return reasoning_content, final_content

assistant_token instance-attribute

assistant_token = '<|assistant|>'

assistant_token_id instance-attribute

assistant_token_id = get(assistant_token)

think_end_token instance-attribute

think_end_token = '</think>'

think_end_token_id instance-attribute

think_end_token_id = get(think_end_token)

think_start_token instance-attribute

think_start_token = '<think>'

think_start_token_id instance-attribute

think_start_token_id = get(think_start_token)

__init__

__init__(
    tokenizer: PreTrainedTokenizerBase, *args, **kwargs
)
Source code in vllm/reasoning/glm4_moe_reasoning_parser.py
def __init__(self, tokenizer: PreTrainedTokenizerBase, *args, **kwargs):
    super().__init__(tokenizer, *args, **kwargs)
    self.think_start_token = "<think>"
    self.think_end_token = "</think>"
    self.assistant_token = "<|assistant|>"

    if not self.model_tokenizer:
        raise ValueError(
            "The model tokenizer must be passed to the ReasoningParser "
            "constructor during construction."
        )

    self.think_start_token_id = self.vocab.get(self.think_start_token)
    self.think_end_token_id = self.vocab.get(self.think_end_token)
    self.assistant_token_id = self.vocab.get(self.assistant_token)
    if (
        self.think_start_token_id is None
        or self.think_end_token_id is None
        or self.assistant_token_id is None
    ):
        raise RuntimeError(
            "Glm4MoeModel reasoning parser could not locate "
            "think start/end or assistant tokens in the tokenizer!"
        )

extract_content_ids

extract_content_ids(input_ids: list[int]) -> list[int]

Extract the content after the end tokens

Source code in vllm/reasoning/glm4_moe_reasoning_parser.py
def extract_content_ids(self, input_ids: list[int]) -> list[int]:
    """
    Extract the content after the end tokens
    """
    if self.think_end_token_id not in input_ids[:-1]:
        return []
    else:
        return input_ids[input_ids.index(self.think_end_token_id) + 1 :]

extract_reasoning_content

extract_reasoning_content(
    model_output: str, request: ChatCompletionRequest
) -> tuple[Optional[str], Optional[str]]

Extract reasoning content from the model output.

For text abcxyz: - 'abc' goes to reasoning_content - 'xyz' goes to content

Returns:

Type Description
tuple[Optional[str], Optional[str]]

tuple[Optional[str], Optional[str]]: reasoning content and content

Source code in vllm/reasoning/glm4_moe_reasoning_parser.py
def extract_reasoning_content(
    self, model_output: str, request: ChatCompletionRequest
) -> tuple[Optional[str], Optional[str]]:
    """
    Extract reasoning content from the model output.

    For text <think>abc</think>xyz:
    - 'abc' goes to reasoning_content
    - 'xyz' goes to content

    Returns:
        tuple[Optional[str], Optional[str]]: reasoning content and content
    """

    # Check if the model output contains the <think> and </think> tokens.
    if (
        self.think_start_token not in model_output
        or self.think_end_token not in model_output
    ):
        return None, model_output
    # Check if the <think> is present in the model output, remove it
    # if it is present.
    model_output_parts = model_output.partition(self.think_start_token)
    model_output = (
        model_output_parts[2] if model_output_parts[1] else model_output_parts[0]
    )
    # Check if the model output contains the </think> tokens.
    # If the end token is not found, return the model output as is.
    if self.think_end_token not in model_output:
        return None, model_output

    # Extract reasoning content from the model output.
    reasoning_content, _, content = model_output.partition(self.think_end_token)

    final_content = content or None
    return reasoning_content, final_content

extract_reasoning_content_streaming

extract_reasoning_content_streaming(
    previous_text: str,
    current_text: str,
    delta_text: str,
    previous_token_ids: Sequence[int],
    current_token_ids: Sequence[int],
    delta_token_ids: Sequence[int],
) -> Union[DeltaMessage, None]

Extract reasoning content from a delta message. Handles streaming output where previous + delta = current. Uses token IDs for faster processing. For text abcxyz: - 'abc' goes to reasoning_content - 'xyz' goes to content

Source code in vllm/reasoning/glm4_moe_reasoning_parser.py
def extract_reasoning_content_streaming(
    self,
    previous_text: str,
    current_text: str,
    delta_text: str,
    previous_token_ids: Sequence[int],
    current_token_ids: Sequence[int],
    delta_token_ids: Sequence[int],
) -> Union[DeltaMessage, None]:
    """
    Extract reasoning content from a delta message.
    Handles streaming output where previous + delta = current.
    Uses token IDs for faster processing.
    For text <think>abc</think>xyz:
    - 'abc' goes to reasoning_content
    - 'xyz' goes to content
    """
    # Skip single special tokens
    if len(delta_token_ids) == 1 and (
        delta_token_ids[0] in [self.think_start_token_id, self.think_end_token_id]
    ):
        return None

    if self.think_start_token_id in previous_token_ids:
        if self.think_end_token_id in delta_token_ids:
            # <think> in previous, </think> in delta,
            # extract reasoning content
            end_index = delta_text.find(self.think_end_token)
            reasoning_content = delta_text[:end_index]
            content = delta_text[end_index + len(self.think_end_token) :]
            return DeltaMessage(
                reasoning_content=reasoning_content,
                content=content if content else None,
            )
        elif self.think_end_token_id in previous_token_ids:
            # <think> in previous, </think> in previous,
            # reasoning content continues
            return DeltaMessage(content=delta_text)
        else:
            # <think> in previous, no </think> in previous or delta,
            # reasoning content continues
            return DeltaMessage(reasoning_content=delta_text)
    elif self.think_start_token_id in delta_token_ids:
        if self.think_end_token_id in delta_token_ids:
            # <think> in delta, </think> in delta, extract reasoning content
            start_index = delta_text.find(self.think_start_token)
            end_index = delta_text.find(self.think_end_token)
            reasoning_content = delta_text[
                start_index + len(self.think_start_token) : end_index
            ]
            content = delta_text[end_index + len(self.think_end_token) :]
            return DeltaMessage(
                reasoning_content=reasoning_content,
                content=content if content else None,
            )
        else:
            # <think> in delta, no </think> in delta,
            # reasoning content continues
            return DeltaMessage(reasoning_content=delta_text)
    else:
        # thinking is disabled, just content
        return DeltaMessage(content=delta_text)

is_reasoning_end

is_reasoning_end(input_ids: list[int]) -> bool

GLM's chat template has tokens after every <|assistant|> token. Thus, we need to check if is after the most recent <|assistant|> token (if present).

Source code in vllm/reasoning/glm4_moe_reasoning_parser.py
def is_reasoning_end(self, input_ids: list[int]) -> bool:
    """
    GLM's chat template has <think></think> tokens after every
    <|assistant|> token. Thus, we need to check if </think> is
    after the most recent <|assistant|> token (if present).
    """
    for token_id in input_ids[::-1]:
        if token_id == self.think_end_token_id:
            return True
        elif token_id == self.assistant_token_id:
            return False
    return False