def create_ubatch_slices(
num_scheduled_tokens: np.ndarray, split_point: int
) -> UBatchSlices:
# TODO(lucas): Refactor the gpu_model_runner.py so we can pass
# in cu_num_tokens directly (i.e. query_start_loc)
cu_num_tokens = np.zeros(len(num_scheduled_tokens) + 1, dtype=np.int32)
np.cumsum(num_scheduled_tokens, dtype=np.int32, out=cu_num_tokens[1:])
first_ubatch_token_slice = slice(0, split_point)
second_ubatch_token_slice = slice(split_point, cu_num_tokens[-1])
# Determine request slices using exclusive stop semantics
# First ubatch includes requests whose tokens overlap [0, split_point)
first_ubatch_req_stop = int(
np.searchsorted(cu_num_tokens, split_point, side="left")
)
first_ubatch_req_slice = slice(0, first_ubatch_req_stop)
# Second ubatch starts at the request that contains the split_point
# or the request starting exactly at split_point (if on boundary)
second_ubatch_req_start = int(
np.searchsorted(cu_num_tokens, split_point, side="right") - 1
)
second_ubatch_req_slice = slice(second_ubatch_req_start, len(cu_num_tokens) - 1)
return [
UBatchSlice(first_ubatch_req_slice, first_ubatch_token_slice),
UBatchSlice(second_ubatch_req_slice, second_ubatch_token_slice),
]